Sugerencias

Escribe  Links  o  informacion de paginas  de internt que hablen sobre:

1. La historia de las computadoras.

2. La evolucion de la Internet.

Anuncios

27 comentarios

  1. YO NO SE Q OPINAL DEBIDO A Q RESPETO YOUR LIFE

  2. .
    Internet, historia y desarrollo
    Ese fascinante medio que nos tiene exhortos y cautivos, pero,
    ¿qué es en realidad el Internet?

    El Internet tiene sus orígenes a mediados de los años 40’s con un dispositivo foto-electro-mecanico llamado Memex (por Memoria Extendida) que podía seguir enlaces entre documentos y microchips.

    A finales de los años 60’s fue desarrollado por el Pentágono con el nombre de Arpanet (Advanced Reseasrch Projects Agency + Net), durante la fase mas crítica de la guerra de Vietnam, como una red de comunicación multidireccional entre ordenadores, para proteger el sistema científico – militar de un eventual sabotaje o de un ataque nuclear. A mediados de los años 70’s principio de los 80’s se extendió a las Universidades y Centros de Educación Superior con fines académicos, tanto en materia de comunicación entre las mismas Universidades así como de transferencia y comparticion de documentos y archivos, permitiendo la colaboración de catedráticos entre sí. A principio de los años 90’s – mediados de los mismos el Internet incursiono en el mundo comercial, explotando las posibilidades para compañias, empresas e individuos que adoptaran dicha tecnología en sus mecanismos de promoción y controles administrativos. A fines de los años 90’s a la fecha el uso del Internet se ha extendido a particulares y público en general de manera sostenida. Con una población mundial de cientos de millones de usuarios, se ha convertido así en portadora del conocimiento global y multicultural.

    El Internet es una red mundial de computadoras conectadas todas entre sí. Puede decirse que es un conjunto de redes (conexión de varias computadoras entre sí) publicas donde cada computadora que este conectada tiene acceso a cualesquier otra computadora a la vez conectada. Veamos al Internet como la librería de recursos más grande del mundo pues en él encontramos información de todo tipo ya que conectados a ella se encuentran Oficinas Gubernamentales, Compañías y Empresas Privadas, Escuelas y Universidades, productores y prestadores de servicios así como profesionistas y publico en general. Con la capacidad de publicación que encierra, se ha convertido en el medio ideal para dar a conocer su información así como sus productos y servicios.

    El poder que encierra el Internet se basa en que está a nuestra disposición una librería de recursos con los cuales tenemos acceso a un sin numero de nuevos clientes, contactos y prospectos al rededor del mundo así como un eficaz y extremadamente barato medio de contacto y comunicación donde de manera exponencial se puede incrementar el numero de usuarios interesados en nuestro producto o servicio así como de encontrar y tener al alcance en diversas partes del mundo personas afines a nuestras ideas permitiendo la colaboración e intercambio de conocimiento.

    Quizás el error más grande ha sido ver al Internet como un conjunto de extremadamente caros y no necesariamente funcionales dominios corporativos donde además se busque concentrar la atención del “Internauta” con el fin de obtener su atención por medios publicistas o de mero entretenimiento buscando así incrementar los “hits” o “raitings” de audiencias a las páginas web.

    * Internet no es, pues, un medio centrípeto y jerarquizado, sino un medio centrífugo, horizontal y ramificado capilarmente, según el principio de la ubicuidad de los flujos de información y de la equiprobabilidad de las conexiones, que ha transformado la ilusión audiovisual -del cine y la televisión- de viajar con la mirada en la realidad de viajar con el pensamiento. Y cuando se piensa que la ubicuidad, la instaneidad, y la inmediatez son tres atributos que han definido tradicionalmente a la divinidad se entenderá que, a ojos de algunos, Internet sea visto como un megamedio con atributos míticos y casi divinos, que ha hecho del ciberespacio un nuevo continente virtual en el que se concentra energía psíquica procedente de todos los países.

  3. http://www.maestrosdelweb.com/editorial/compuhis/

    http://www.caplicado.net/empresa/historia.htm

    oyeee micheal jacksonnn q la q toma tus paginas ya tu sabes el paparrazzi al dia ok…

  4. Tags: Reseñas, Glosario, Computadora, historia

    Historia de la computadora
    La computadora es un invento reciente, que no ha cumplido ni los cien años de existencia desde su primera generación. Sin embargo es un invento que ha venido a revolucionar la forma en la que trabajamos, nos entretenemos y se ha convertido en un aparato esencial en nuestra vida diaria.

    El museo de la historia de la computación
    Antes de continuar, revisa este vídeo sobre el Museo de la historia de la computadora que se encuentra en Silicon Valley:

    Más artículos de la serie de historias
    La historia de Internet
    La historia del correo electrónico
    La historia de Google
    La historia de Microsoft
    Otras historias
    Y ahora sí, continuando, con la historia de la Computadora:

    Primera Generación (1951 a 1958)
    Las computadoras de la primera Generación emplearon bulbos para procesar información. Los operadores ingresaban los datos y programas en código especial por medio de tarjetas perforadas. El almacenamiento interno se lograba con un tambor que giraba rápidamente, sobre el cual un dispositivo de lectura/escritura colocaba marcas magnéticas. Esas computadoras de bulbos eran mucho más grandes y generaban más calor que los modelos contemporáneos.

    Eckert y Mauchly contribuyeron al desarrollo de computadoras de la Primera Generación formando una compañía privada y construyendo UNIVAC I, que el Comité del censo utilizó para evaluar el censo de 1950. La IBM tenía el monopolio de los equipos de procesamiento de datos a base de tarjetas perforadas y estaba teniendo un gran auge en productos como rebanadores de carne, básculas para comestibles, relojes y otros artículos; sin embargo no había logrado el contrato para el Censo de 1950.

    Comenzó entonces a construir computadoras electrónicas y su primera entrada fue con la IBM 701 en 1953. Después de un lento pero excitante comienzo la IBM 701 se convirtió en un producto comercialmente viable. Sin embargo en 1954 fue introducido el modelo IBM 650, el cual es la razón por la que IBM disfruta hoy de una gran parte del mercado de las computadoras. La administración de la IBM asumió un gran riesgo y estimó una venta de 50 computadoras.

    Este número era mayor que la cantidad de computadoras instaladas en esa época en E.U. De hecho la IBM instaló 1000 computadoras. El resto es historia. Aunque caras y de uso limitado las computadoras fueron aceptadas rápidamente por las Compañías privadas y de Gobierno. A la mitad de los años 50 IBM y Remington Rand se consolidaban como líderes en la fabricación de computadoras.

    Segunda Generación (1959-1964)
    Transistor Compatibilidad Limitada:
    El invento del transistor hizo posible una nueva Generación de computadoras, más rápidas, más pequeñas y con menores necesidades de ventilación. Sin embargo el costo seguía siendo una porción significativa del presupuesto de una Compañía. Las computadoras de la segunda generación también utilizaban redes de núcleos magnéticos en lugar de tambores giratorios para el almacenamiento primario. Estos núcleos contenían pequeños anillos de material magnético, enlazados entre sí, en los cuales podían almacenarse datos e instrucciones.

    Los programas de computadoras también mejoraron. El COBOL desarrollado durante la 1era generación estaba ya disponible comercialmente. Los programas escritos para una computadora podían transferirse a otra con un mínimo esfuerzo. El escribir un programa ya no requería entender plenamente el hardware de la computación.

    Las computadoras de la 2da Generación eran sustancialmente más pequeñas y rápidas que las de bulbos, y se usaban para nuevas aplicaciones, como en los sistemas para reservación en líneas aéreas, control de tráfico aéreo y simulaciones para uso general. Las empresas comenzaron a aplicar las computadoras a tareas de almacenamiento de registros, como manejo de inventarios, nómina y contabilidad.

    La marina de E.U. utilizó las computadoras de la Segunda Generación para crear el primer simulador de vuelo. (Whirlwind I). HoneyWell se colocó como el primer competidor durante la segunda generación de computadoras. Burroughs, Univac, NCR, CDC, HoneyWell, los más grandes competidores de IBM durante los 60s se conocieron como el grupo BUNCH.

    Tercera Generación (1964-1971)
    Circuitos Integrados, Compatibilidad con Equipo Mayor, Multiprogramación, Minicomputadora:
    Las computadoras de la tercera generación emergieron con el desarrollo de los circuitos integrados (pastillas de silicio) en las cuales se colocan miles de componentes electrónicos, en una integración en miniatura. Las computadoras nuevamente se hicieron más pequeñas, más rápidas, desprendían menos calor y eran energéticamente más eficientes.

    Antes del advenimiento de los circuitos integrados, las computadoras estaban diseñadas para aplicaciones matemáticas o de negocios, pero no para las dos cosas. Los circuitos integrados permitieron a los fabricantes de computadoras incrementar la flexibilidad de los programas, y estandarizar sus modelos.

    La IBM 360 una de las primeras computadoras comerciales que usó circuitos integrados, podía realizar tanto análisis numéricos como administración ó procesamiento de archivos. Los clientes podían escalar sus sistemas 360 a modelos IBM de mayor tamaño y podían todavía correr sus programas actuales. Las computadoras trabajaban a tal velocidad que proporcionaban la capacidad de correr más de un programa de manera simultánea (multiprogramación).

    Por ejemplo la computadora podía estar calculando la nomina y aceptando pedidos al mismo tiempo. Minicomputadoras, Con la introducción del modelo 360 IBM acaparó el 70% del mercado, para evitar competir directamente con IBM la empresa Digital Equipment Corporation DEC redirigió sus esfuerzos hacia computadoras pequeñas. Mucho menos costosas de comprar y de operar que las computadoras grandes, las mini computadoras se desarrollaron durante la segunda generación pero alcanzaron su mayor auge entre 1960 y 1970.

    Cuarta Generación (1971 a la fecha)
    Microprocesador, Chips de memoria, Microminiaturización:
    Dos mejoras en la tecnología de las computadoras marcan el inicio de la cuarta generación: el reemplazo de las memorias con núcleos magnéticos, por las de chips de silicio y la colocación de Muchos más componentes en un Chip: producto de la microminiaturización de los circuitos electrónicos. El tamaño reducido del microprocesador y de chips hizo posible la creación de las computadoras personales (PC Personal Computer).

    Hoy en día las tecnologías LSI (Integración a gran escala) y VLSI (integración a muy gran escala) permiten que cientos de miles de componentes electrónicos se almacenen en un chip. Usando VLSI, un fabricante puede hacer que una computadora pequeña rivalice con una computadora de la primera generación que ocupaba un cuarto completo

  5. .
    Internet, historia y desarrollo
    Ese fascinante medio que nos tiene exhortos y cautivos, pero,
    ¿qué es en realidad el Internet?

    El Internet tiene sus orígenes a mediados de los años 40’s con un dispositivo foto-electro-mecanico llamado Memex (por Memoria Extendida) que podía seguir enlaces entre documentos y microchips.

    A finales de los años 60’s fue desarrollado por el Pentágono con el nombre de Arpanet (Advanced Reseasrch Projects Agency + Net), durante la fase mas crítica de la guerra de Vietnam, como una red de comunicación multidireccional entre ordenadores, para proteger el sistema científico – militar de un eventual sabotaje o de un ataque nuclear. A mediados de los años 70’s principio de los 80’s se extendió a las Universidades y Centros de Educación Superior con fines académicos, tanto en materia de comunicación entre las mismas Universidades así como de transferencia y comparticion de documentos y archivos, permitiendo la colaboración de catedráticos entre sí. A principio de los años 90’s – mediados de los mismos el Internet incursiono en el mundo comercial, explotando las posibilidades para compañias, empresas e individuos que adoptaran dicha tecnología en sus mecanismos de promoción y controles administrativos. A fines de los años 90’s a la fecha el uso del Internet se ha extendido a particulares y público en general de manera sostenida. Con una población mundial de cientos de millones de usuarios, se ha convertido así en portadora del conocimiento global y multicultural.

    El Internet es una red mundial de computadoras conectadas todas entre sí. Puede decirse que es un conjunto de redes (conexión de varias computadoras entre sí) publicas donde cada computadora que este conectada tiene acceso a cualesquier otra computadora a la vez conectada. Veamos al Internet como la librería de recursos más grande del mundo pues en él encontramos información de todo tipo ya que conectados a ella se encuentran Oficinas Gubernamentales, Compañías y Empresas Privadas, Escuelas y Universidades, productores y prestadores de servicios así como profesionistas y publico en general. Con la capacidad de publicación que encierra, se ha convertido en el medio ideal para dar a conocer su información así como sus productos y servicios.

    El poder que encierra el Internet se basa en que está a nuestra disposición una librería de recursos con los cuales tenemos acceso a un sin numero de nuevos clientes, contactos y prospectos al rededor del mundo así como un eficaz y extremadamente barato medio de contacto y comunicación donde de manera exponencial se puede incrementar el numero de usuarios interesados en nuestro producto o servicio así como de encontrar y tener al alcance en diversas partes del mundo personas afines a nuestras ideas permitiendo la colaboración e intercambio de conocimiento.

    Quizás el error más grande ha sido ver al Internet como un conjunto de extremadamente caros y no necesariamente funcionales dominios corporativos donde además se busque concentrar la atención del “Internauta” con el fin de obtener su atención por medios publicistas o de mero entretenimiento buscando así incrementar los “hits” o “raitings” de audiencias a las páginas web.

    * Internet no es, pues, un medio centrípeto y jerarquizado, sino un medio centrífugo, horizontal y ramificado capilarmente, según el principio de la ubicuidad de los flujos de información y de la equiprobabilidad de las conexiones, que ha transformado la ilusión audiovisual -del cine y la televisión- de viajar con la mirada en la realidad de viajar con el pensamiento. Y cuando se piensa que la ubicuidad, la instaneidad, y la inmediatez son tres atributos que han definido tradicionalmente a la divinidad se entenderá que, a ojos de algunos, Internet sea visto como un megamedio con atributos míticos y casi divinos, que ha hecho del ciberespacio un nuevo continente virtual en el que se concentra energía psíquica procedente de todos los países.

  6. Historia de la computadora

    Primera Generación (1951 a 1958)
    Las computadoras de la primera Generación emplearon bulbos para procesar información. Los operadores ingresaban los datos y programas en código especial por medio de tarjetas perforadas. El almacenamiento interno se lograba con un tambor que giraba rápidamente, sobre el cual un dispositivo de lectura/escritura colocaba marcas magnéticas. Esas computadoras de bulbos eran mucho más grandes y generaban más calor que los modelos contemporáneos.
    Eckert y Mauchly contribuyeron al desarrollo de computadoras de la Primera Generación formando una compañía privada y construyendo UNIVAC I, que el Comité del censo utilizó para evaluar el censo de 1950. La IBM tenía el monopolio de los equipos de procesamiento de datos a base de tarjetas perforadas y estaba teniendo un gran auge en productos como rebanadores de carne, básculas para comestibles, relojes y otros artículos; sin embargo no había logrado el contrato para el Censo de 1950.
    Comenzó entonces a construir computadoras electrónicas y su primera entrada fue con la IBM 701 en 1953. Después de un lento pero excitante comienzo la IBM 701 se convirtió en un producto comercialmente viable. Sin embargo en 1954 fue introducido el modelo IBM 650, el cual es la razón por la que IBM disfruta hoy de una gran parte del mercado de las computadoras. La administración de la IBM asumió un gran riesgo y estimó una venta de 50 computadoras.
    Este número era mayor que la cantidad de computadoras instaladas en esa época en E.U. De hecho la IBM instaló 1000 computadoras. El resto es historia. Aunque caras y de uso limitado las computadoras fueron aceptadas rápidamente por las Compañías privadas y de Gobierno. A la mitad de los años 50 IBM y Remington Rand se consolidaban como líderes en la fabricación de computadoras.
    Segunda Generación (1959-1964)
    Transistor Compatibilidad Limitada:
    El invento del transistor hizo posible una nueva Generación de computadoras, más rápidas, más pequeñas y con menores necesidades de ventilación. Sin embargo el costo seguía siendo una porción significativa del presupuesto de una Compañía. Las computadoras de la segunda generación también utilizaban redes de núcleos magnéticos en lugar de tambores giratorios para el almacenamiento primario. Estos núcleos contenían pequeños anillos de material magnético, enlazados entre sí, en los cuales podían almacenarse datos e instrucciones.
    Los programas de computadoras también mejoraron. El COBOL desarrollado durante la 1era generación estaba ya disponible comercialmente. Los programas escritos para una computadora podían transferirse a otra con un mínimo esfuerzo. El escribir un programa ya no requería entender plenamente el hardware de la computación.
    Las computadoras de la 2da Generación eran sustancialmente más pequeñas y rápidas que las de bulbos, y se usaban para nuevas aplicaciones, como en los sistemas para reservación en líneas aéreas, control de tráfico aéreo y simulaciones para uso general. Las empresas comenzaron a aplicar las computadoras a tareas de almacenamiento de registros, como manejo de inventarios, nómina y contabilidad.
    La marina de E.U. utilizó las computadoras de la Segunda Generación para crear el primer simulador de vuelo. (Whirlwind I). HoneyWell se colocó como el primer competidor durante la segunda generación de computadoras. Burroughs, Univac, NCR, CDC, HoneyWell, los más grandes competidores de IBM durante los 60s se conocieron como el grupo BUNCH.
    Tercera Generación (1964-1971)
    Circuitos Integrados, Compatibilidad con Equipo Mayor, Multiprogramación, Minicomputadora:
    Las computadoras de la tercera generación emergieron con el desarrollo de los circuitos integrados (pastillas de silicio) en las cuales se colocan miles de componentes electrónicos, en una integración en miniatura. Las computadoras nuevamente se hicieron más pequeñas, más rápidas, desprendían menos calor y eran energéticamente más eficientes.
    Antes del advenimiento de los circuitos integrados, las computadoras estaban diseñadas para aplicaciones matemáticas o de negocios, pero no para las dos cosas. Los circuitos integrados permitieron a los fabricantes de computadoras incrementar la flexibilidad de los programas, y estandarizar sus modelos.
    La IBM 360 una de las primeras computadoras comerciales que usó circuitos integrados, podía realizar tanto análisis numéricos como administración ó procesamiento de archivos. Los clientes podían escalar sus sistemas 360 a modelos IBM de mayor tamaño y podían todavía correr sus programas actuales. Las computadoras trabajaban a tal velocidad que proporcionaban la capacidad de correr más de un programa de manera simultánea (multiprogramación).
    Por ejemplo la computadora podía estar calculando la nomina y aceptando pedidos al mismo tiempo. Minicomputadoras, Con la introducción del modelo 360 IBM acaparó el 70% del mercado, para evitar competir directamente con IBM la empresa Digital Equipment Corporation DEC redirigió sus esfuerzos hacia computadoras pequeñas. Mucho menos costosas de comprar y de operar que las computadoras grandes, las mini computadoras se desarrollaron durante la segunda generación pero alcanzaron su mayor auge entre 1960 y 1970.
    Cuarta Generación (1971 a la fecha)
    Microprocesador, Chips de memoria, Microminiaturización:
    Dos mejoras en la tecnología de las computadoras marcan el inicio de la cuarta generación: el reemplazo de las memorias con núcleos magnéticos, por las de chips de silicio y la colocación de Muchos más componentes en un Chip: producto de la microminiaturización de los circuitos electrónicos. El tamaño reducido del microprocesador y de chips hizo posible la creación de las computadoras personales (PC Personal Computer).
    Hoy en día las tecnologías LSI (Integración a gran escala) y VLSI (integración a muy gran escala) permiten que cientos de miles de componentes electrónicos se almacenen en un chip. Usando VLSI, un fabricante puede hacer que una computadora pequeña rivalice con una computadora de la primera generación que ocupaba un cuarto completo.

    Desarrollo de la internet
    Internet surgió de un proyecto desarrollado en Estados Unidos para apoyar a sus fuerzas militares. Luego de su creación fue utilizado por el gobierno, universidades y otros centros académicos.
    Internet ha supuesto una revolución sin precedentes en el mundo de la informática y de las comunicaciones. Los inventos del telégrafo, teléfono, radio y ordenador sentaron las bases para esta integración de capacidades nunca antes vivida. Internet es a la vez una oportunidad de difusión mundial, un mecanismo de propagación de la información y un medio de colaboración e interacción entre los individuos y sus ordenadores independientemente de su localización geográfica.
    Orígenes de Internet
    La primera descripción documentada acerca de las interacciones sociales que podrían ser propiciadas a través del networking (trabajo en red) está contenida en una serie de memorándums escritos por J.C.R. Licklider, del Massachusetts Institute of Technology, en Agosto de 1962, en los cuales Licklider discute sobre su concepto de Galactic Network (Red Galáctica).
    El concibió una red interconectada globalmente a través de la que cada uno pudiera acceder desde cualquier lugar a datos y programas. En esencia, el concepto era muy parecido a la Internet actual. Licklider fue el principal responsable del programa de investigación en ordenadores de la DARPA desde Octubre de 1962. Mientras trabajó en DARPA convenció a sus sucesores Ivan Sutherland, Bob Taylor, y el investigador del MIT Lawrence G. Roberts de la importancia del concepto de trabajo en red.
    En Julio de 1961 Leonard Kleinrock publicó desde el MIT el primer documento sobre la teoría de conmutación de paquetes. Kleinrock convenció a Roberts de la factibilidad teórica de las comunicaciones vía paquetes en lugar de circuitos, lo cual resultó ser un gran avance en el camino hacia el trabajo informático en red. El otro paso fundamental fue hacer dialogar a los ordenadores entre sí.
    Para explorar este terreno, en 1965, Roberts conectó un ordenador TX2 en Massachusetts con un Q-32 en California a través de una línea telefónica conmutada de baja velocidad, creando así la primera (aunque reducida) red de ordenadores de área amplia jamás construida. El resultado del experimento fue la constatación de que los ordenadores de tiempo compartido podían trabajar juntos correctamente, ejecutando programas y recuperando datos a discreción en la máquina remota, pero que el sistema telefónico de conmutación de circuitos era totalmente inadecuado para esta labor. La convicción de Kleinrock acerca de la necesidad de la conmutación de paquetes quedó pues confirmada.
    A finales de 1966 Roberts se trasladó a la DARPA a desarrollar el concepto de red de ordenadores y rápidamente confeccionó su plan para ARPANET, publicándolo en 1967. En la conferencia en la que presentó el documento se exponía también un trabajo sobre el concepto de red de paquetes a cargo de Donald Davies y Roger Scantlebury del NPL. Scantlebury le habló a Roberts sobre su trabajo en el NPL así como sobre el de Paul Baran y otros en RAND. El grupo RAND había escrito un documento sobre redes de conmutación de paquetes para comunicación vocal segura en el ámbito militar, en 1964.
    Ocurrió que los trabajos del MIT (1961-67), RAND (1962-65) y NPL (1964-67) habían discurrido en paralelo sin que los investigadores hubieran conocido el trabajo de los demás. La palabra packet (paquete) fue adoptada a partir del trabajo del NPL y la velocidad de la línea propuesta para ser usada en el diseño de ARPANET fue aumentada desde 2,4 Kbps hasta 50 Kbps (5).
    En Agosto de 1968, después de que Roberts y la comunidad de la DARPA hubieran refinado la estructura global y las especificaciones de ARPANET, DARPA lanzó un RFQ para el desarrollo de uno de sus componentes clave: los conmutadores de paquetes llamados interface message processors (IMPs, procesadores de mensajes de interfaz).
    El RFQ fue ganado en Diciembre de 1968 por un grupo encabezado por Frank Heart, de Bolt Beranek y Newman (BBN). Así como el equipo de BBN trabajó en IMPs con Bob Kahn tomando un papel principal en el diseño de la arquitectura de la ARPANET global, la topología de red y el aspecto económico fueron diseñados y optimizados por Roberts trabajando con Howard Frank y su equipo en la Network Analysis Corporation, y el sistema de medida de la red fue preparado por el equipo de Kleinrock de la Universidad de California, en Los Angeles (6).
    A causa del temprano desarrollo de la teoría de conmutación de paquetes de Kleinrock y su énfasis en el análisis, diseño y medición, su Network Measurement Center (Centro de Medidas de Red) en la UCLA fue seleccionado para ser el primer nodo de ARPANET. Todo ello ocurrió en Septiembre de 1969, cuando BBN instaló el primer IMP en la UCLA y quedó conectado el primer ordenador host .
    El proyecto de Doug Engelbart denominado Augmentation of Human Intelect (Aumento del Intelecto Humano) que incluía NLS, un primitivo sistema hipertexto en el Instituto de Investigación de Standford (SRI) proporcionó un segundo nodo. El SRI patrocinó el Network Information Center , liderado por Elizabeth (Jake) Feinler, que desarrolló funciones tales como mantener tablas de nombres de host para la traducción de direcciones así como un directorio de RFCs ( Request For Comments ).
    Un mes más tarde, cuando el SRI fue conectado a ARPANET, el primer mensaje de host a host fue enviado desde el laboratorio de Leinrock al SRI. Se añadieron dos nodos en la Universidad de California, Santa Bárbara, y en la Universidad de Utah. Estos dos últimos nodos incorporaron proyectos de visualización de aplicaciones, con Glen Culler y Burton Fried en la UCSB investigando métodos para mostrar funciones matemáticas mediante el uso de “storage displays” ( N. del T. : mecanismos que incorporan buffers de monitorización distribuidos en red para facilitar el refresco de la visualización) para tratar con el problema de refrescar sobre la red, y Robert Taylor y Ivan Sutherland en Utah investigando métodos de representación en 3-D a través de la red.
    Así, a finales de 1969, cuatro ordenadores host fueron conectados cojuntamente a la ARPANET inicial y se hizo realidad una embrionaria Internet. Incluso en esta primitiva etapa, hay que reseñar que la investigación incorporó tanto el trabajo mediante la red ya existente como la mejora de la utilización de dicha red. Esta tradición continúa hasta el día de hoy.
    Se siguieron conectando ordenadores rápidamente a la ARPANET durante los años siguientes y el trabajo continuó para completar un protocolo host a host funcionalmente completo, así como software adicional de red. En Diciembre de 1970, el Network Working Group (NWG) liderado por S.Crocker acabó el protocolo host a host inicial para ARPANET, llamado Network Control Protocol (NCP, protocolo de control de red). Cuando en los nodos de ARPANET se completó la implementación del NCP durante el periodo 1971-72, los usuarios de la red pudieron finalmente comenzar a desarrollar aplicaciones.
    En Octubre de 1972, Kahn organizó una gran y muy exitosa demostración de ARPANET en la International Computer Communication Conference . Esta fue la primera demostración pública de la nueva tecnología de red. Fue también en 1972 cuando se introdujo la primera aplicación “estrella”: el correo electrónico.
    En Marzo, Ray Tomlinson, de BBN, escribió el software básico de envío-recepción de mensajes de correo electrónico, impulsado por la necesidad que tenían los desarrolladores de ARPANET de un mecanismo sencillo de coordinación.
    En Julio, Roberts expandió su valor añadido escribiendo el primer programa de utilidad de correo electrónico para relacionar, leer selectivamente, almacenar, reenviar y responder a mensajes. Desde entonces, la aplicación de correo electrónico se convirtió en la mayor de la red durante más de una década. Fue precursora del tipo de actividad que observamos hoy día en la World Wide Web , es decir, del enorme crecimiento de todas las formas de tráfico persona a persona.
    Conceptos iniciales sobre Internetting
    La ARPANET original evolucionó hacia Internet. Internet se basó en la idea de que habría múltiples redes independientes, de diseño casi arbitrario, empezando por ARPANET como la red pionera de conmutación de paquetes, pero que pronto incluiría redes de paquetes por satélite, redes de paquetes por radio y otros tipos de red. Internet como ahora la conocemos encierra una idea técnica clave, la de arquitectura abierta de trabajo en red.
    Bajo este enfoque, la elección de cualquier tecnología de red individual no respondería a una arquitectura específica de red sino que podría ser seleccionada libremente por un proveedor e interactuar con las otras redes a través del metanivel de la arquitectura de Internetworking (trabajo entre redes). Hasta ese momento, había un sólo método para “federar” redes.
    Era el tradicional método de conmutación de circuitos, por el cual las redes se interconectaban a nivel de circuito pasándose bits individuales síncronamente a lo largo de una porción de circuito que unía un par de sedes finales. Cabe recordar que Kleinrock había mostrado en 1961 que la conmutación de paquetes era el método de conmutación más eficiente.
    Juntamente con la conmutación de paquetes, las interconexiones de propósito especial entre redes constituían otra posibilidad. Y aunque había otros métodos limitados de interconexión de redes distintas, éstos requerían que una de ellas fuera usada como componente de la otra en lugar de actuar simplemente como un extremo de la comunicación para ofrecer servicio end-to-end (extremo a extremo).
    En una red de arquitectura abierta, las redes individuales pueden ser diseñadas y desarrolladas separadamente y cada una puede tener su propia y única interfaz, que puede ofrecer a los usuarios y/u otros proveedores, incluyendo otros proveedores de Internet. Cada red puede ser diseñada de acuerdo con su entorno específico y los requerimientos de los usuarios de aquella red.
    No existen generalmente restricciones en los tipos de red que pueden ser incorporadas ni tampoco en su ámbito geográfico, aunque ciertas consideraciones pragmáticas determinan qué posibilidades tienen sentido. La idea de arquitectura de red abierta fue introducida primeramente por Kahn un poco antes de su llegada a la DARPA en 1972. Este trabajo fue originalmente parte de su programa de paquetería por radio, pero más tarde se convirtió por derecho propio en un programa separado.
    Entonces, el programa fue llamado Internetting . La clave para realizar el trabajo del sistema de paquetería por radio fue un protocolo extremo a extremo seguro que pudiera mantener la comunicación efectiva frente a los cortes e interferencias de radio y que pudiera manejar las pérdidas intermitentes como las causadas por el paso a través de un túnel o el bloqueo a nivel local. Kahn pensó primero en desarrollar un protocolo local sólo para la red de paquetería por radio porque ello le hubiera evitado tratar con la multitud de sistemas operativos distintos y continuar usando NCP.
    Sin embargo, NCP no tenía capacidad para direccionar redes y máquinas más allá de un destino IMP en ARPANET y de esta manera se requerían ciertos cambios en el NCP. La premisa era que ARPANET no podía ser cambiado en este aspecto. El NCP se basaba en ARPANET para proporcionar seguridad extremo a extremo. Si alguno de los paquetes se perdía, el protocolo y presumiblemente cualquier aplicación soportada sufriría una grave interrupción. En este modelo, el NCP no tenía control de errores en el host porque ARPANET había de ser la única red existente y era tan fiable que no requería ningún control de errores en la parte de los host s.
    Así, Kahn decidió desarrollar una nueva versión del protocolo que pudiera satisfacer las necesidades de un entorno de red de arquitectura abierta. El protocolo podría eventualmente ser denominado “Transmisson-Control Protocol/Internet Protocol” (TCP/IP, protocolo de control de transmisión /protocolo de Internet). Así como el NCP tendía a actuar como un driver (manejador) de dispositivo, el nuevo protocolo sería más bien un protocolo de comunicaciones.
    Ideas a prueba
    DARPA formalizó tres contratos con Stanford (Cerf), BBN (Ray Tomlinson) y UCLA (Peter Kirstein) para implementar TCP/IP (en el documento original de Cerf y Kahn se llamaba simplemente TCP pero contenía ambos componentes). El equipo de Stanford, dirigido por Cerf, produjo las especificaciones detalladas y al cabo de un año hubo tres implementaciones independientes de TCP que podían interoperar.
    Este fue el principio de un largo periodo de experimentación y desarrollo para evolucionar y madurar el concepto y tecnología de Internet. Partiendo de las tres primeras redes ARPANET, radio y satélite y de sus comunidades de investigación iniciales, el entorno experimental creció hasta incorporar esencialmente cualquier forma de red y una amplia comunidad de investigación y desarrollo [REK78]. Cada expansión afrontó nuevos desafíos.
    Las primeras implementaciones de TCP se hicieron para grandes sistemas en tiempo compartido como Tenex y TOPS 20. Cuando aparecieron los ordenadores de sobremesa ( desktop ), TCP era demasiado grande y complejo como para funcionar en ordenadores personales. David Clark y su equipo de investigación del MIT empezaron a buscar la implementación de TCP más sencilla y compacta posible.
    La desarrollaron, primero para el Alto de Xerox (la primera estación de trabajo personal desarrollada en el PARC de Xerox), y luego para el PC de IBM. Esta implementación operaba con otras de TCP, pero estaba adaptada al conjunto de aplicaciones y a las prestaciones de un ordenador personal, y demostraba que las estaciones de trabajo, al igual que los grandes sistemas, podían ser parte de Internet.
    En los años 80, el desarrollo de LAN, PC y estaciones de trabajo permitió que la naciente Internet floreciera. La tecnología Ethernet, desarrollada por Bob Metcalfe en el PARC de Xerox en 1973, es la dominante en Internet, y los PCs y las estaciones de trabajo los modelos de ordenador dominantes. El cambio que supone pasar de una pocas redes con un modesto número de hosts (el modelo original de ARPANET) a tener muchas redes dio lugar a nuevos conceptos y a cambios en la tecnología.
    En primer lugar, hubo que definir tres clases de redes (A, B y C) para acomodar todas las existentes. La clase A representa a las redes grandes, a escala nacional (pocas redes con muchos ordenadores); la clase B representa redes regionales; por último, la clase C representa redes de área local (muchas redes con relativamente pocos ordenadores).
    Como resultado del crecimiento de Internet, se produjo un cambio de gran importancia para la red y su gestión. Para facilitar el uso de Internet por sus usuarios se asignaron nombres a los host s de forma que resultara innecesario recordar sus direcciones numéricas. Originalmente había un número muy limitado de máquinas, por lo que bastaba con una simple tabla con todos los ordenadores y sus direcciones asociadas.
    El cambio hacia un gran número de redes gestionadas independientemente (por ejemplo, las LAN) significó que no resultara ya fiable tener una pequeña tabla con todos los host s. Esto llevó a la invención del DNS ( Domain Name System , sistema de nombres de dominio) por Paul Mockapetris de USC/ISI. El DNS permitía un mecanismo escalable y distribuido para resolver jerárquicamente los nombres de los host s (por ejemplo, http://www.acm.org o http://www.ati.es ) en direcciones de Internet.
    El incremento del tamaño de Internet resultó también un desafío para los routers . Originalmente había un sencillo algoritmo de enrutamiento que estaba implementado uniformemente en todos los routers de Internet. A medida que el número de redes en Internet se multiplicaba, el diseño inicial no era ya capaz de expandirse, por lo que fue sustituido por un modelo jerárquico de enrutamiento con un protocolo IGP ( Interior Gateway Protocol , protocolo interno de pasarela) usado dentro de cada región de Internet y un protocolo EGP ( Exterior Gateway Protocol , protocolo externo de pasarela) usado para mantener unidas las regiones.
    El diseño permitía que distintas regiones utilizaran IGP distintos, por lo que los requisitos de coste, velocidad de configuración, robustez y escalabilidad, podían ajustarse a cada situación. Los algoritmos de enrutamiento no eran los únicos en poner en dificultades la capacidad de los routers , también lo hacía el tamaño de la tablas de direccionamiento. Se presentaron nuevas aproximaciones a la agregación de direcciones (en particular CIDR, Classless Interdomain Routing , enrutamiento entre dominios sin clase) para controlar el tamaño de las tablas de enrutamiento.
    A medida que evolucionaba Internet, la propagación de los cambios en el software, especialmente el de los host s, se fue convirtiendo en uno de sus mayores desafíos. DARPA financió a la Universidad de California en Berkeley en una investigación sobre modificaciones en el sistema operativo Unix, incorporando el TCP/IP desarrollado en BBN. Aunque posteriormente Berkeley modificó esta implementación del BBN para que operara de forma más eficiente con el sistema y el kernel de Unix, la incorporación de TCP/IP en el sistema Unix BSD demostró ser un elemento crítico en la difusión de los protocolos entre la comunidad investigadora.
    BSD empezó a ser utilizado en sus operaciones diarias por buena parte de la comunidad investigadora en temas relacionados con informática. Visto en perspectiva, la estrategia de incorporar los protocolos de Internet en un sistema operativo utilizado por la comunidad investigadora fue uno de los elementos clave en la exitosa y amplia aceptación de Internet.
    Uno de los desafíos más interesantes fue la transición del protocolo para host s de ARPANET desde NCP a TCP/IP el 1 de enero de 1983. Se trataba de una ocasión muy importante que exigía que todos los host s se convirtieran simultáneamente o que permanecieran comunicados mediante mecanismos desarrollados para la ocasión.
    La transición fue cuidadosamente planificada dentro de la comunidad con varios años de antelación a la fecha, pero fue sorprendentemente sobre ruedas (a pesar de dar la lugar a la distribución de insignias con la inscripción “Yo sobreviví a la transición a TCP/IP”).
    TCP/IP había sido adoptado como un estándar por el ejército norteamericano tres años antes, en 1980. Esto permitió al ejército empezar a compartir la tecnología DARPA basada en Internet y llevó a la separación final entre las comunidades militares y no militares. En 1983 ARPANET estaba siendo usada por un número significativo de organizaciones operativas y de investigación y desarrollo en el área de la defensa. La transición desde NCP a TCP/IP en ARPANET permitió la división en una MILNET para dar soporte a requisitos operativos y una ARPANET para las necesidades de investigación.
    Así, en 1985, Internet estaba firmemente establecida como una tecnología que ayudaba a una amplia comunidad de investigadores y desarrolladores, y empezaba a ser empleada por otros grupos en sus comunicaciones diarias entre ordenadores. El correo electrónico se empleaba ampliamente entre varias comunidades, a menudo entre distintos sistemas. La interconexión entre los diversos sistemas de correo demostraba la utilidad de las comunicaciones electrónicas entre personas.
    La transici1ón hacia una infraestructura global
    Al mismo tiempo que la tecnología Internet estaba siendo validada experimentalmente y usada ampliamente entre un grupo de investigadores de informática se estaban desarrollando otras redes y tecnologías. La utilidad de las redes de ordenadores (especialmente el correo electrónico utilizado por los contratistas de DARPA y el Departamento de Defensa en ARPANET) siguió siendo evidente para otras comunidades y disciplinas de forma que a mediados de los años 70 las redes de ordenadores comenzaron a difundirse allá donde se podía encontrar financiación para las mismas.
    El Departamento norteamericano de Energía (DoE, Deparment of Energy ) estableció MFENet para sus investigadores que trabajaban sobre energía de fusión, mientras que los físicos de altas energías fueron los encargados de construir HEPNet. Los físicos de la NASA continuaron con SPAN y Rick Adrion, David Farber y Larry Landweber fundaron CSNET para la comunidad informática académica y de la industria con la financiación inicial de la NFS ( National Science Foundation , Fundación Nacional de la Ciencia) de Estados Unidos.
    La libre diseminación del sistema operativo Unix de ATT dio lugar a USENET, basada en los protocolos de comunicación UUCP de Unix, y en 1981 Greydon Freeman e Ira Fuchs diseñaron BITNET, que unía los ordenadores centrales del mundo académico siguiendo el paradigma de correo electrónico como “postales”. Con la excepción de BITNET y USENET, todas las primeras redes (como ARPANET) se construyeron para un propósito determinado.
    Es decir, estaban dedicadas (y restringidas) a comunidades cerradas de estudiosos; de ahí las escasas presiones por hacer estas redes compatibles y, en consecuencia, el hecho de que durante mucho tiempo no lo fueran. Además, estaban empezando a proponerse tecnologías alternativas en el sector comercial, como XNS de Xerox, DECNet, y la SNA de IBM (8).
    Sólo restaba que los programas ingleses JANET (1984) y norteamericano NSFNET (1985) anunciaran explícitamente que su propósito era servir a toda la comunidad de la enseñanza superior sin importar su disciplina. De hecho, una de las condiciones para que una universidad norteamericana recibiera financiación de la NSF para conectarse a Internet era que “la conexión estuviera disponible para todos los usuarios cualificados del campus”.
    En 1985 Dennins Jenning acudió desde Irlanda para pasar un año en NFS dirigiendo el programa NSFNET. Trabajó con el resto de la comunidad para ayudar a la NSF a tomar una decisión crítica: si TCP/IP debería ser obligatorio en el programa NSFNET. Cuando Steve Wolff llegó al programa NFSNET en 1986 reconoció la necesidad de una infraestructura de red amplia que pudiera ser de ayuda a la comunidad investigadora y a la académica en general, junto a la necesidad de desarrollar una estrategia para establecer esta infraestructura sobre bases independientes de la financiación pública directa. Se adoptaron varias políticas y estrategias para alcanzar estos fines.
    La NSF optó también por mantener la infraestructura organizativa de Internet existente (DARPA) dispuesta jerárquicamente bajo el IAB ( Internet Activities Board , Comité de Actividades de Internet). La declaración pública de esta decisión firmada por todos sus autores (por los grupos de Arquitectura e Ingeniería de la IAB, y por el NTAG de la NSF) apareció como la RFC 985 (“Requisitos para pasarelas de Internet”) que formalmente aseguraba la interoperatividad entre las partes de Internet dependientes de DARPA y de NSF.
    El backbone había hecho la transición desde una red construida con routers de la comunidad investigadora (los routers Fuzzball de David Mills) a equipos comerciales. En su vida de ocho años y medio, el backbone había crecido desde seis nodos con enlaces de 56Kb a 21 nodos con enlaces múltiples de 45Mb.Había visto crecer Internet hasta alcanzar más de 50.000 redes en los cinco continentes y en el espacio exterior, con aproximadamente 29.000 redes en los Estados Unidos.
    El efecto del ecumenismo del programa NSFNET y su financiación (200 millones de dólares entre 1986 y 1995) y de la calidad de los protocolos fue tal que en 1990, cuando la propia ARPANET se disolvió, TCP/IP había sustituido o marginado a la mayor parte de los restantes protocolos de grandes redes de ordenadores e IP estaba en camino de convertirse en el servicio portador de la llamada Infraestructura Global de Información.
    El papel de la documentación
    Un aspecto clave del rápido crecimiento de Internet ha sido el acceso libre y abierto a los documentos básicos, especialmente a las especificaciones de los protocolos.
    Los comienzos de Arpanet y de Internet en la comunidad de investigación universitaria estimularon la tradición académica de la publicación abierta de ideas y resultados. Sin embargo, el ciclo normal de la publicación académica tradicional era demasiado formal y lento para el intercambio dinámico de ideas, esencial para crear redes.
    En 1969 S.Crocker, entonces en UCLA, dio un paso clave al establecer la serie de notas RFC ( Request For Comments , petición de comentarios). Estos memorándums pretendieron ser una vía informal y de distribución rápida para compartir ideas con otros investigadores en redes. Al principio, las RFC fueron impresas en papel y distribuidas vía correo “lento”. Pero cuando el FTP ( File Transfer Protocol , protocolo de transferencia de ficheros) empezó a usarse, las RFC se convirtieron en ficheros difundidos online a los que se accedía vía FTP.
    Hoy en día, desde luego, están disponibles en el World Wide Web en decenas de emplazamientos en todo el mundo. SRI, en su papel como Centro de Información en la Red, mantenía los directorios online . Jon Postel actuaba como editor de RFC y como gestor de la administración centralizada de la asignación de los números de protocolo requeridos, tareas en las que continúa hoy en día.
    El efecto de las RFC era crear un bucle positivo de realimentación, con ideas o propuestas presentadas a base de que una RFC impulsara otra RFC con ideas adicionales y así sucesivamente. Una vez se hubiera obtenido un consenso se prepararía un documento de especificación. Tal especificación seria entonces usada como la base para las implementaciones por parte de los equipos de investigación.
    Con el paso del tiempo, las RFC se han enfocado a estándares de protocolo –las especificaciones oficiales- aunque hay todavía RFC informativas que describen enfoques alternativos o proporcionan información de soporte en temas de protocolos e ingeniería. Las RFC son vistas ahora como los documentos de registro dentro de la comunidad de estándares y de ingeniería en Internet.
    El acceso abierto a las RFC –libre si se dispone de cualquier clase de conexión a Internet- promueve el crecimiento de Internet porque permite que las especificaciones sean usadas a modo de ejemplo en las aulas universitarias o por emprendedores al desarrollar nuevos sistemas.
    El e-mail o correo electrónico ha supuesto un factor determinante en todas las áreas de Internet, lo que es particularmente cierto en el desarrollo de las especificaciones de protocolos, estándares técnicos e ingeniería en Internet. Las primitivas RFC a menudo presentaban al resto de la comunidad un conjunto de ideas desarrolladas por investigadores de un solo lugar. Después de empezar a usarse el correo electrónico, el modelo de autoría cambió: las RFC pasaron a ser presentadas por coautores con visiones en común, independientemente de su localización.
    Las listas de correo especializadas ha sido usadas ampliamente en el desarrollo de la especificación de protocolos, y continúan siendo una herramienta importante. El IETF tiene ahora más de 75 grupos de trabajo, cada uno dedicado a un aspecto distinto de la ingeniería en Internet. Cada uno de estos grupos de trabajo dispone de una lista de correo para discutir uno o más borradores bajo desarrollo. Cuando se alcanza el consenso en el documento, éste puede ser distribuido como una RFC.
    Debido a que la rápida expansión actual de Internet se alimenta por el aprovechamiento de su capacidad de promover la compartición de información, deberíamos entender que el primer papel en esta tarea consistió en compartir la información acerca de su propio diseño y operación a través de los documentos RFC. Este método único de producir nuevas capacidades en la red continuará siendo crítico para la futura evolución de Internet.
    El futuro: Internet 2
    Internet2 es el futuro de la red de redes y está formado actualmente por un consorcio dirigido por 206 universidades que junto a la industria de comunicaciones y el gobierno están desarrollando nuevas técnicas de conexión que acelerarán la capacidad de transferencia entre servidores.
    Sus objetivos están enfocados a la educación y la investigación académica. Además buscan aprovechar aplicaciones de audio y video que demandan más capacidad de transferencia de ancho de banda.

  7. http://es.wikipidia.org/wiki/historia_de_internet el desarrollo,historia de las computadoras.

  8. Una computadora o un computador, (del inglés computer, y éste del latín computare -calcular-), también denominada ordenador (del francés ordinateur, y éste del latín ordinator), es una máquina electrónica que recibe y procesa datos para convertirlos en información útil. Una computadora es una colección de circuitos integrados y otros componentes relacionados que puede ejecutar con exactitud, rapidez y de acuerdo a lo indicado por un usuario o automáticamente por otro programa, una gran variedad de secuencias o rutinas de instrucciones que son ordenadas, organizadas y sistematizadas en función a una amplia gama de aplicaciones prácticas y precisamente determinadas, proceso al cual se le ha denominado con el nombre de programación y al que lo realiza se le llama programador. La computadora, además de la rutina o programa informático, necesita de datos específicos (a estos datos, en conjunto, se les conoce como “Input” en inglés) que deben ser suministrados, y que son requeridos al momento de la ejecución, para proporcionar el producto final del procesamiento de datos, que recibe el nombre de “output”. La información puede ser entonces utilizada, reinterpretada, copiada, transferida, o retransmitida a otra(s) persona(s), computadora(s) o componente(s) electrónico(s) local o remotamente usando diferentes sistemas de telecomunicación, pudiendo ser grabada, salvada o almacenada en algún tipo de dispositivo o unidad de almacenamiento.

    La característica principal que la distingue de otros dispositivos similares, como la calculadora no programable, es que es una máquina de propósito general, es decir, puede realizar tareas muy diversas, de acuerdo a las posibilidades que brinde los lenguajes de programación y el hardware.

  9. Gracias a las personas que han colaborado!!!!

  10. Historia de la computadora

    Primera Generación (1951 a 1958)
    Las computadoras de la primera Generación emplearon bulbos para procesar información. Los operadores ingresaban los datos y programas en código especial por medio de tarjetas perforadas. El almacenamiento interno se lograba con un tambor que giraba rápidamente, sobre el cual un dispositivo de lectura/escritura colocaba marcas magnéticas. Esas computadoras de bulbos eran mucho más grandes y generaban más calor que los modelos contemporáneos.
    Eckert y Mauchly contribuyeron al desarrollo de computadoras de la Primera Generación formando una compañía privada y construyendo UNIVAC I, que el Comité del censo utilizó para evaluar el censo de 1950. La IBM tenía el monopolio de los equipos de procesamiento de datos a base de tarjetas perforadas y estaba teniendo un gran auge en productos como rebanadores de carne, básculas para comestibles, relojes y otros artículos; sin embargo no había logrado el contrato para el Censo de 1950.
    Comenzó entonces a construir computadoras electrónicas y su primera entrada fue con la IBM 701 en 1953. Después de un lento pero excitante comienzo la IBM 701 se convirtió en un producto comercialmente viable. Sin embargo en 1954 fue introducido el modelo IBM 650, el cual es la razón por la que IBM disfruta hoy de una gran parte del mercado de las computadoras. La administración de la IBM asumió un gran riesgo y estimó una venta de 50 computadoras.
    Este número era mayor que la cantidad de computadoras instaladas en esa época en E.U. De hecho la IBM instaló 1000 computadoras. El resto es historia. Aunque caras y de uso limitado las computadoras fueron aceptadas rápidamente por las Compañías privadas y de Gobierno. A la mitad de los años 50 IBM y Remington Rand se consolidaban como líderes en la fabricación de computadoras.
    Segunda Generación (1959-1964)
    Transistor Compatibilidad Limitada:
    El invento del transistor hizo posible una nueva Generación de computadoras, más rápidas, más pequeñas y con menores necesidades de ventilación. Sin embargo el costo seguía siendo una porción significativa del presupuesto de una Compañía. Las computadoras de la segunda generación también utilizaban redes de núcleos magnéticos en lugar de tambores giratorios para el almacenamiento primario. Estos núcleos contenían pequeños anillos de material magnético, enlazados entre sí, en los cuales podían almacenarse datos e instrucciones.
    Los programas de computadoras también mejoraron. El COBOL desarrollado durante la 1era generación estaba ya disponible comercialmente. Los programas escritos para una computadora podían transferirse a otra con un mínimo esfuerzo. El escribir un programa ya no requería entender plenamente el hardware de la computación.
    Las computadoras de la 2da Generación eran sustancialmente más pequeñas y rápidas que las de bulbos, y se usaban para nuevas aplicaciones, como en los sistemas para reservación en líneas aéreas, control de tráfico aéreo y simulaciones para uso general. Las empresas comenzaron a aplicar las computadoras a tareas de almacenamiento de registros, como manejo de inventarios, nómina y contabilidad.
    La marina de E.U. utilizó las computadoras de la Segunda Generación para crear el primer simulador de vuelo. (Whirlwind I). HoneyWell se colocó como el primer competidor durante la segunda generación de computadoras. Burroughs, Univac, NCR, CDC, HoneyWell, los más grandes competidores de IBM durante los 60s se conocieron como el grupo BUNCH.
    Tercera Generación (1964-1971)
    Circuitos Integrados, Compatibilidad con Equipo Mayor, Multiprogramación, Minicomputadora:
    Las computadoras de la tercera generación emergieron con el desarrollo de los circuitos integrados (pastillas de silicio) en las cuales se colocan miles de componentes electrónicos, en una integración en miniatura. Las computadoras nuevamente se hicieron más pequeñas, más rápidas, desprendían menos calor y eran energéticamente más eficientes.
    Antes del advenimiento de los circuitos integrados, las computadoras estaban diseñadas para aplicaciones matemáticas o de negocios, pero no para las dos cosas. Los circuitos integrados permitieron a los fabricantes de computadoras incrementar la flexibilidad de los programas, y estandarizar sus modelos.
    La IBM 360 una de las primeras computadoras comerciales que usó circuitos integrados, podía realizar tanto análisis numéricos como administración ó procesamiento de archivos. Los clientes podían escalar sus sistemas 360 a modelos IBM de mayor tamaño y podían todavía correr sus programas actuales. Las computadoras trabajaban a tal velocidad que proporcionaban la capacidad de correr más de un programa de manera simultánea (multiprogramación).
    Por ejemplo la computadora podía estar calculando la nomina y aceptando pedidos al mismo tiempo. Minicomputadoras, Con la introducción del modelo 360 IBM acaparó el 70% del mercado, para evitar competir directamente con IBM la empresa Digital Equipment Corporation DEC redirigió sus esfuerzos hacia computadoras pequeñas. Mucho menos costosas de comprar y de operar que las computadoras grandes, las mini computadoras se desarrollaron durante la segunda generación pero alcanzaron su mayor auge entre 1960 y 1970.
    Cuarta Generación (1971 a la fecha)
    Microprocesador, Chips de memoria, Microminiaturización:
    Dos mejoras en la tecnología de las computadoras marcan el inicio de la cuarta generación: el reemplazo de las memorias con núcleos magnéticos, por las de chips de silicio y la colocación de Muchos más componentes en un Chip: producto de la microminiaturización de los circuitos electrónicos. El tamaño reducido del microprocesador y de chips hizo posible la creación de las computadoras personales (PC Personal Computer).
    Hoy en día las tecnologías LSI (Integración a gran escala) y VLSI (integración a muy gran escala) permiten que cientos de miles de componentes electrónicos se almacenen en un chip. Usando VLSI, un fabricante puede hacer que una computadora pequeña rivalice con una computadora de la primera generación que ocupaba un cuarto completo.

    Desarrollo de la internet
    Internet surgió de un proyecto desarrollado en Estados Unidos para apoyar a sus fuerzas militares. Luego de su creación fue utilizado por el gobierno, universidades y otros centros académicos.
    Internet ha supuesto una revolución sin precedentes en el mundo de la informática y de las comunicaciones. Los inventos del telégrafo, teléfono, radio y ordenador sentaron las bases para esta integración de capacidades nunca antes vivida. Internet es a la vez una oportunidad de difusión mundial, un mecanismo de propagación de la información y un medio de colaboración e interacción entre los individuos y sus ordenadores independientemente de su localización geográfica.
    Orígenes de Internet
    La primera descripción documentada acerca de las interacciones sociales que podrían ser propiciadas a través del networking (trabajo en red) está contenida en una serie de memorándums escritos por J.C.R. Licklider, del Massachusetts Institute of Technology, en Agosto de 1962, en los cuales Licklider discute sobre su concepto de Galactic Network (Red Galáctica).
    El concibió una red interconectada globalmente a través de la que cada uno pudiera acceder desde cualquier lugar a datos y programas. En esencia, el concepto era muy parecido a la Internet actual. Licklider fue el principal responsable del programa de investigación en ordenadores de la DARPA desde Octubre de 1962. Mientras trabajó en DARPA convenció a sus sucesores Ivan Sutherland, Bob Taylor, y el investigador del MIT Lawrence G. Roberts de la importancia del concepto de trabajo en red.
    En Julio de 1961 Leonard Kleinrock publicó desde el MIT el primer documento sobre la teoría de conmutación de paquetes. Kleinrock convenció a Roberts de la factibilidad teórica de las comunicaciones vía paquetes en lugar de circuitos, lo cual resultó ser un gran avance en el camino hacia el trabajo informático en red. El otro paso fundamental fue hacer dialogar a los ordenadores entre sí.
    Para explorar este terreno, en 1965, Roberts conectó un ordenador TX2 en Massachusetts con un Q-32 en California a través de una línea telefónica conmutada de baja velocidad, creando así la primera (aunque reducida) red de ordenadores de área amplia jamás construida. El resultado del experimento fue la constatación de que los ordenadores de tiempo compartido podían trabajar juntos correctamente, ejecutando programas y recuperando datos a discreción en la máquina remota, pero que el sistema telefónico de conmutación de circuitos era totalmente inadecuado para esta labor. La convicción de Kleinrock acerca de la necesidad de la conmutación de paquetes quedó pues confirmada.
    A finales de 1966 Roberts se trasladó a la DARPA a desarrollar el concepto de red de ordenadores y rápidamente confeccionó su plan para ARPANET, publicándolo en 1967. En la conferencia en la que presentó el documento se exponía también un trabajo sobre el concepto de red de paquetes a cargo de Donald Davies y Roger Scantlebury del NPL. Scantlebury le habló a Roberts sobre su trabajo en el NPL así como sobre el de Paul Baran y otros en RAND. El grupo RAND había escrito un documento sobre redes de conmutación de paquetes para comunicación vocal segura en el ámbito militar, en 1964.
    Ocurrió que los trabajos del MIT (1961-67), RAND (1962-65) y NPL (1964-67) habían discurrido en paralelo sin que los investigadores hubieran conocido el trabajo de los demás. La palabra packet (paquete) fue adoptada a partir del trabajo del NPL y la velocidad de la línea propuesta para ser usada en el diseño de ARPANET fue aumentada desde 2,4 Kbps hasta 50 Kbps (5).
    En Agosto de 1968, después de que Roberts y la comunidad de la DARPA hubieran refinado la estructura global y las especificaciones de ARPANET, DARPA lanzó un RFQ para el desarrollo de uno de sus componentes clave: los conmutadores de paquetes llamados interface message processors (IMPs, procesadores de mensajes de interfaz).
    El RFQ fue ganado en Diciembre de 1968 por un grupo encabezado por Frank Heart, de Bolt Beranek y Newman (BBN). Así como el equipo de BBN trabajó en IMPs con Bob Kahn tomando un papel principal en el diseño de la arquitectura de la ARPANET global, la topología de red y el aspecto económico fueron diseñados y optimizados por Roberts trabajando con Howard Frank y su equipo en la Network Analysis Corporation, y el sistema de medida de la red fue preparado por el equipo de Kleinrock de la Universidad de California, en Los Angeles (6).
    A causa del temprano desarrollo de la teoría de conmutación de paquetes de Kleinrock y su énfasis en el análisis, diseño y medición, su Network Measurement Center (Centro de Medidas de Red) en la UCLA fue seleccionado para ser el primer nodo de ARPANET. Todo ello ocurrió en Septiembre de 1969, cuando BBN instaló el primer IMP en la UCLA y quedó conectado el primer ordenador host .
    El proyecto de Doug Engelbart denominado Augmentation of Human Intelect (Aumento del Intelecto Humano) que incluía NLS, un primitivo sistema hipertexto en el Instituto de Investigación de Standford (SRI) proporcionó un segundo nodo. El SRI patrocinó el Network Information Center , liderado por Elizabeth (Jake) Feinler, que desarrolló funciones tales como mantener tablas de nombres de host para la traducción de direcciones así como un directorio de RFCs ( Request For Comments ).
    Un mes más tarde, cuando el SRI fue conectado a ARPANET, el primer mensaje de host a host fue enviado desde el laboratorio de Leinrock al SRI. Se añadieron dos nodos en la Universidad de California, Santa Bárbara, y en la Universidad de Utah. Estos dos últimos nodos incorporaron proyectos de visualización de aplicaciones, con Glen Culler y Burton Fried en la UCSB investigando métodos para mostrar funciones matemáticas mediante el uso de “storage displays” ( N. del T. : mecanismos que incorporan buffers de monitorización distribuidos en red para facilitar el refresco de la visualización) para tratar con el problema de refrescar sobre la red, y Robert Taylor y Ivan Sutherland en Utah investigando métodos de representación en 3-D a través de la red.
    Así, a finales de 1969, cuatro ordenadores host fueron conectados cojuntamente a la ARPANET inicial y se hizo realidad una embrionaria Internet. Incluso en esta primitiva etapa, hay que reseñar que la investigación incorporó tanto el trabajo mediante la red ya existente como la mejora de la utilización de dicha red. Esta tradición continúa hasta el día de hoy.
    Se siguieron conectando ordenadores rápidamente a la ARPANET durante los años siguientes y el trabajo continuó para completar un protocolo host a host funcionalmente completo, así como software adicional de red. En Diciembre de 1970, el Network Working Group (NWG) liderado por S.Crocker acabó el protocolo host a host inicial para ARPANET, llamado Network Control Protocol (NCP, protocolo de control de red). Cuando en los nodos de ARPANET se completó la implementación del NCP durante el periodo 1971-72, los usuarios de la red pudieron finalmente comenzar a desarrollar aplicaciones.
    En Octubre de 1972, Kahn organizó una gran y muy exitosa demostración de ARPANET en la International Computer Communication Conference . Esta fue la primera demostración pública de la nueva tecnología de red. Fue también en 1972 cuando se introdujo la primera aplicación “estrella”: el correo electrónico.
    En Marzo, Ray Tomlinson, de BBN, escribió el software básico de envío-recepción de mensajes de correo electrónico, impulsado por la necesidad que tenían los desarrolladores de ARPANET de un mecanismo sencillo de coordinación.
    En Julio, Roberts expandió su valor añadido escribiendo el primer programa de utilidad de correo electrónico para relacionar, leer selectivamente, almacenar, reenviar y responder a mensajes. Desde entonces, la aplicación de correo electrónico se convirtió en la mayor de la red durante más de una década. Fue precursora del tipo de actividad que observamos hoy día en la World Wide Web , es decir, del enorme crecimiento de todas las formas de tráfico persona a persona.
    Conceptos iniciales sobre Internetting
    La ARPANET original evolucionó hacia Internet. Internet se basó en la idea de que habría múltiples redes independientes, de diseño casi arbitrario, empezando por ARPANET como la red pionera de conmutación de paquetes, pero que pronto incluiría redes de paquetes por satélite, redes de paquetes por radio y otros tipos de red. Internet como ahora la conocemos encierra una idea técnica clave, la de arquitectura abierta de trabajo en red.
    Bajo este enfoque, la elección de cualquier tecnología de red individual no respondería a una arquitectura específica de red sino que podría ser seleccionada libremente por un proveedor e interactuar con las otras redes a través del metanivel de la arquitectura de Internetworking (trabajo entre redes). Hasta ese momento, había un sólo método para “federar” redes.
    Era el tradicional método de conmutación de circuitos, por el cual las redes se interconectaban a nivel de circuito pasándose bits individuales síncronamente a lo largo de una porción de circuito que unía un par de sedes finales. Cabe recordar que Kleinrock había mostrado en 1961 que la conmutación de paquetes era el método de conmutación más eficiente.
    Juntamente con la conmutación de paquetes, las interconexiones de propósito especial entre redes constituían otra posibilidad. Y aunque había otros métodos limitados de interconexión de redes distintas, éstos requerían que una de ellas fuera usada como componente de la otra en lugar de actuar simplemente como un extremo de la comunicación para ofrecer servicio end-to-end (extremo a extremo).
    En una red de arquitectura abierta, las redes individuales pueden ser diseñadas y desarrolladas separadamente y cada una puede tener su propia y única interfaz, que puede ofrecer a los usuarios y/u otros proveedores, incluyendo otros proveedores de Internet. Cada red puede ser diseñada de acuerdo con su entorno específico y los requerimientos de los usuarios de aquella red.
    No existen generalmente restricciones en los tipos de red que pueden ser incorporadas ni tampoco en su ámbito geográfico, aunque ciertas consideraciones pragmáticas determinan qué posibilidades tienen sentido. La idea de arquitectura de red abierta fue introducida primeramente por Kahn un poco antes de su llegada a la DARPA en 1972. Este trabajo fue originalmente parte de su programa de paquetería por radio, pero más tarde se convirtió por derecho propio en un programa separado.
    Entonces, el programa fue llamado Internetting . La clave para realizar el trabajo del sistema de paquetería por radio fue un protocolo extremo a extremo seguro que pudiera mantener la comunicación efectiva frente a los cortes e interferencias de radio y que pudiera manejar las pérdidas intermitentes como las causadas por el paso a través de un túnel o el bloqueo a nivel local. Kahn pensó primero en desarrollar un protocolo local sólo para la red de paquetería por radio porque ello le hubiera evitado tratar con la multitud de sistemas operativos distintos y continuar usando NCP.
    Sin embargo, NCP no tenía capacidad para direccionar redes y máquinas más allá de un destino IMP en ARPANET y de esta manera se requerían ciertos cambios en el NCP. La premisa era que ARPANET no podía ser cambiado en este aspecto. El NCP se basaba en ARPANET para proporcionar seguridad extremo a extremo. Si alguno de los paquetes se perdía, el protocolo y presumiblemente cualquier aplicación soportada sufriría una grave interrupción. En este modelo, el NCP no tenía control de errores en el host porque ARPANET había de ser la única red existente y era tan fiable que no requería ningún control de errores en la parte de los host s.
    Así, Kahn decidió desarrollar una nueva versión del protocolo que pudiera satisfacer las necesidades de un entorno de red de arquitectura abierta. El protocolo podría eventualmente ser denominado “Transmisson-Control Protocol/Internet Protocol” (TCP/IP, protocolo de control de transmisión /protocolo de Internet). Así como el NCP tendía a actuar como un driver (manejador) de dispositivo, el nuevo protocolo sería más bien un protocolo de comunicaciones.
    Ideas a prueba
    DARPA formalizó tres contratos con Stanford (Cerf), BBN (Ray Tomlinson) y UCLA (Peter Kirstein) para implementar TCP/IP (en el documento original de Cerf y Kahn se llamaba simplemente TCP pero contenía ambos componentes). El equipo de Stanford, dirigido por Cerf, produjo las especificaciones detalladas y al cabo de un año hubo tres implementaciones independientes de TCP que podían interoperar.
    Este fue el principio de un largo periodo de experimentación y desarrollo para evolucionar y madurar el concepto y tecnología de Internet. Partiendo de las tres primeras redes ARPANET, radio y satélite y de sus comunidades de investigación iniciales, el entorno experimental creció hasta incorporar esencialmente cualquier forma de red y una amplia comunidad de investigación y desarrollo [REK78]. Cada expansión afrontó nuevos desafíos.
    Las primeras implementaciones de TCP se hicieron para grandes sistemas en tiempo compartido como Tenex y TOPS 20. Cuando aparecieron los ordenadores de sobremesa ( desktop ), TCP era demasiado grande y complejo como para funcionar en ordenadores personales. David Clark y su equipo de investigación del MIT empezaron a buscar la implementación de TCP más sencilla y compacta posible.
    La desarrollaron, primero para el Alto de Xerox (la primera estación de trabajo personal desarrollada en el PARC de Xerox), y luego para el PC de IBM. Esta implementación operaba con otras de TCP, pero estaba adaptada al conjunto de aplicaciones y a las prestaciones de un ordenador personal, y demostraba que las estaciones de trabajo, al igual que los grandes sistemas, podían ser parte de Internet.
    En los años 80, el desarrollo de LAN, PC y estaciones de trabajo permitió que la naciente Internet floreciera. La tecnología Ethernet, desarrollada por Bob Metcalfe en el PARC de Xerox en 1973, es la dominante en Internet, y los PCs y las estaciones de trabajo los modelos de ordenador dominantes. El cambio que supone pasar de una pocas redes con un modesto número de hosts (el modelo original de ARPANET) a tener muchas redes dio lugar a nuevos conceptos y a cambios en la tecnología.
    En primer lugar, hubo que definir tres clases de redes (A, B y C) para acomodar todas las existentes. La clase A representa a las redes grandes, a escala nacional (pocas redes con muchos ordenadores); la clase B representa redes regionales; por último, la clase C representa redes de área local (muchas redes con relativamente pocos ordenadores).
    Como resultado del crecimiento de Internet, se produjo un cambio de gran importancia para la red y su gestión. Para facilitar el uso de Internet por sus usuarios se asignaron nombres a los host s de forma que resultara innecesario recordar sus direcciones numéricas. Originalmente había un número muy limitado de máquinas, por lo que bastaba con una simple tabla con todos los ordenadores y sus direcciones asociadas.
    El cambio hacia un gran número de redes gestionadas independientemente (por ejemplo, las LAN) significó que no resultara ya fiable tener una pequeña tabla con todos los host s. Esto llevó a la invención del DNS ( Domain Name System , sistema de nombres de dominio) por Paul Mockapetris de USC/ISI. El DNS permitía un mecanismo escalable y distribuido para resolver jerárquicamente los nombres de los host s (por ejemplo, http://www.acm.org o http://www.ati.es ) en direcciones de Internet.
    El incremento del tamaño de Internet resultó también un desafío para los routers . Originalmente había un sencillo algoritmo de enrutamiento que estaba implementado uniformemente en todos los routers de Internet. A medida que el número de redes en Internet se multiplicaba, el diseño inicial no era ya capaz de expandirse, por lo que fue sustituido por un modelo jerárquico de enrutamiento con un protocolo IGP ( Interior Gateway Protocol , protocolo interno de pasarela) usado dentro de cada región de Internet y un protocolo EGP ( Exterior Gateway Protocol , protocolo externo de pasarela) usado para mantener unidas las regiones.
    El diseño permitía que distintas regiones utilizaran IGP distintos, por lo que los requisitos de coste, velocidad de configuración, robustez y escalabilidad, podían ajustarse a cada situación. Los algoritmos de enrutamiento no eran los únicos en poner en dificultades la capacidad de los routers , también lo hacía el tamaño de la tablas de direccionamiento. Se presentaron nuevas aproximaciones a la agregación de direcciones (en particular CIDR, Classless Interdomain Routing , enrutamiento entre dominios sin clase) para controlar el tamaño de las tablas de enrutamiento.
    A medida que evolucionaba Internet, la propagación de los cambios en el software, especialmente el de los host s, se fue convirtiendo en uno de sus mayores desafíos. DARPA financió a la Universidad de California en Berkeley en una investigación sobre modificaciones en el sistema operativo Unix, incorporando el TCP/IP desarrollado en BBN. Aunque posteriormente Berkeley modificó esta implementación del BBN para que operara de forma más eficiente con el sistema y el kernel de Unix, la incorporación de TCP/IP en el sistema Unix BSD demostró ser un elemento crítico en la difusión de los protocolos entre la comunidad investigadora.
    BSD empezó a ser utilizado en sus operaciones diarias por buena parte de la comunidad investigadora en temas relacionados con informática. Visto en perspectiva, la estrategia de incorporar los protocolos de Internet en un sistema operativo utilizado por la comunidad investigadora fue uno de los elementos clave en la exitosa y amplia aceptación de Internet.
    Uno de los desafíos más interesantes fue la transición del protocolo para host s de ARPANET desde NCP a TCP/IP el 1 de enero de 1983. Se trataba de una ocasión muy importante que exigía que todos los host s se convirtieran simultáneamente o que permanecieran comunicados mediante mecanismos desarrollados para la ocasión.
    La transición fue cuidadosamente planificada dentro de la comunidad con varios años de antelación a la fecha, pero fue sorprendentemente sobre ruedas (a pesar de dar la lugar a la distribución de insignias con la inscripción “Yo sobreviví a la transición a TCP/IP”).
    TCP/IP había sido adoptado como un estándar por el ejército norteamericano tres años antes, en 1980. Esto permitió al ejército empezar a compartir la tecnología DARPA basada en Internet y llevó a la separación final entre las comunidades militares y no militares. En 1983 ARPANET estaba siendo usada por un número significativo de organizaciones operativas y de investigación y desarrollo en el área de la defensa. La transición desde NCP a TCP/IP en ARPANET permitió la división en una MILNET para dar soporte a requisitos operativos y una ARPANET para las necesidades de investigación.
    Así, en 1985, Internet estaba firmemente establecida como una tecnología que ayudaba a una amplia comunidad de investigadores y desarrolladores, y empezaba a ser empleada por otros grupos en sus comunicaciones diarias entre ordenadores. El correo electrónico se empleaba ampliamente entre varias comunidades, a menudo entre distintos sistemas. La interconexión entre los diversos sistemas de correo demostraba la utilidad de las comunicaciones electrónicas entre personas.
    La transici1ón hacia una infraestructura global
    Al mismo tiempo que la tecnología Internet estaba siendo validada experimentalmente y usada ampliamente entre un grupo de investigadores de informática se estaban desarrollando otras redes y tecnologías. La utilidad de las redes de ordenadores (especialmente el correo electrónico utilizado por los contratistas de DARPA y el Departamento de Defensa en ARPANET) siguió siendo evidente para otras comunidades y disciplinas de forma que a mediados de los años 70 las redes de ordenadores comenzaron a difundirse allá donde se podía encontrar financiación para las mismas.
    El Departamento norteamericano de Energía (DoE, Deparment of Energy ) estableció MFENet para sus investigadores que trabajaban sobre energía de fusión, mientras que los físicos de altas energías fueron los encargados de construir HEPNet. Los físicos de la NASA continuaron con SPAN y Rick Adrion, David Farber y Larry Landweber fundaron CSNET para la comunidad informática académica y de la industria con la financiación inicial de la NFS ( National Science Foundation , Fundación Nacional de la Ciencia) de Estados Unidos.
    La libre diseminación del sistema operativo Unix de ATT dio lugar a USENET, basada en los protocolos de comunicación UUCP de Unix, y en 1981 Greydon Freeman e Ira Fuchs diseñaron BITNET, que unía los ordenadores centrales del mundo académico siguiendo el paradigma de correo electrónico como “postales”. Con la excepción de BITNET y USENET, todas las primeras redes (como ARPANET) se construyeron para un propósito determinado.
    Es decir, estaban dedicadas (y restringidas) a comunidades cerradas de estudiosos; de ahí las escasas presiones por hacer estas redes compatibles y, en consecuencia, el hecho de que durante mucho tiempo no lo fueran. Además, estaban empezando a proponerse tecnologías alternativas en el sector comercial, como XNS de Xerox, DECNet, y la SNA de IBM (8).
    Sólo restaba que los programas ingleses JANET (1984) y norteamericano NSFNET (1985) anunciaran explícitamente que su propósito era servir a toda la comunidad de la enseñanza superior sin importar su disciplina. De hecho, una de las condiciones para que una universidad norteamericana recibiera financiación de la NSF para conectarse a Internet era que “la conexión estuviera disponible para todos los usuarios cualificados del campus”.
    En 1985 Dennins Jenning acudió desde Irlanda para pasar un año en NFS dirigiendo el programa NSFNET. Trabajó con el resto de la comunidad para ayudar a la NSF a tomar una decisión crítica: si TCP/IP debería ser obligatorio en el programa NSFNET. Cuando Steve Wolff llegó al programa NFSNET en 1986 reconoció la necesidad de una infraestructura de red amplia que pudiera ser de ayuda a la comunidad investigadora y a la académica en general, junto a la necesidad de desarrollar una estrategia para establecer esta infraestructura sobre bases independientes de la financiación pública directa. Se adoptaron varias políticas y estrategias para alcanzar estos fines.
    La NSF optó también por mantener la infraestructura organizativa de Internet existente (DARPA) dispuesta jerárquicamente bajo el IAB ( Internet Activities Board , Comité de Actividades de Internet). La declaración pública de esta decisión firmada por todos sus autores (por los grupos de Arquitectura e Ingeniería de la IAB, y por el NTAG de la NSF) apareció como la RFC 985 (“Requisitos para pasarelas de Internet”) que formalmente aseguraba la interoperatividad entre las partes de Internet dependientes de DARPA y de NSF.
    El backbone había hecho la transición desde una red construida con routers de la comunidad investigadora (los routers Fuzzball de David Mills) a equipos comerciales. En su vida de ocho años y medio, el backbone había crecido desde seis nodos con enlaces de 56Kb a 21 nodos con enlaces múltiples de 45Mb.Había visto crecer Internet hasta alcanzar más de 50.000 redes en los cinco continentes y en el espacio exterior, con aproximadamente 29.000 redes en los Estados Unidos.
    El efecto del ecumenismo del programa NSFNET y su financiación (200 millones de dólares entre 1986 y 1995) y de la calidad de los protocolos fue tal que en 1990, cuando la propia ARPANET se disolvió, TCP/IP había sustituido o marginado a la mayor parte de los restantes protocolos de grandes redes de ordenadores e IP estaba en camino de convertirse en el servicio portador de la llamada Infraestructura Global de Información.
    El papel de la documentación
    Un aspecto clave del rápido crecimiento de Internet ha sido el acceso libre y abierto a los documentos básicos, especialmente a las especificaciones de los protocolos.
    Los comienzos de Arpanet y de Internet en la comunidad de investigación universitaria estimularon la tradición académica de la publicación abierta de ideas y resultados. Sin embargo, el ciclo normal de la publicación académica tradicional era demasiado formal y lento para el intercambio dinámico de ideas, esencial para crear redes.
    En 1969 S.Crocker, entonces en UCLA, dio un paso clave al establecer la serie de notas RFC ( Request For Comments , petición de comentarios). Estos memorándums pretendieron ser una vía informal y de distribución rápida para compartir ideas con otros investigadores en redes. Al principio, las RFC fueron impresas en papel y distribuidas vía correo “lento”. Pero cuando el FTP ( File Transfer Protocol , protocolo de transferencia de ficheros) empezó a usarse, las RFC se convirtieron en ficheros difundidos online a los que se accedía vía FTP.
    Hoy en día, desde luego, están disponibles en el World Wide Web en decenas de emplazamientos en todo el mundo. SRI, en su papel como Centro de Información en la Red, mantenía los directorios online . Jon Postel actuaba como editor de RFC y como gestor de la administración centralizada de la asignación de los números de protocolo requeridos, tareas en las que continúa hoy en día.
    El efecto de las RFC era crear un bucle positivo de realimentación, con ideas o propuestas presentadas a base de que una RFC impulsara otra RFC con ideas adicionales y así sucesivamente. Una vez se hubiera obtenido un consenso se prepararía un documento de especificación. Tal especificación seria entonces usada como la base para las implementaciones por parte de los equipos de investigación.
    Con el paso del tiempo, las RFC se han enfocado a estándares de protocolo –las especificaciones oficiales- aunque hay todavía RFC informativas que describen enfoques alternativos o proporcionan información de soporte en temas de protocolos e ingeniería. Las RFC son vistas ahora como los documentos de registro dentro de la comunidad de estándares y de ingeniería en Internet.
    El acceso abierto a las RFC –libre si se dispone de cualquier clase de conexión a Internet- promueve el crecimiento de Internet porque permite que las especificaciones sean usadas a modo de ejemplo en las aulas universitarias o por emprendedores al desarrollar nuevos sistemas.
    El e-mail o correo electrónico ha supuesto un factor determinante en todas las áreas de Internet, lo que es particularmente cierto en el desarrollo de las especificaciones de protocolos, estándares técnicos e ingeniería en Internet. Las primitivas RFC a menudo presentaban al resto de la comunidad un conjunto de ideas desarrolladas por investigadores de un solo lugar. Después de empezar a usarse el correo electrónico, el modelo de autoría cambió: las RFC pasaron a ser presentadas por coautores con visiones en común, independientemente de su localización.
    Las listas de correo especializadas ha sido usadas ampliamente en el desarrollo de la especificación de protocolos, y continúan siendo una herramienta importante. El IETF tiene ahora más de 75 grupos de trabajo, cada uno dedicado a un aspecto distinto de la ingeniería en Internet. Cada uno de estos grupos de trabajo dispone de una lista de correo para discutir uno o más borradores bajo desarrollo. Cuando se alcanza el consenso en el documento, éste puede ser distribuido como una RFC.
    Debido a que la rápida expansión actual de Internet se alimenta por el aprovechamiento de su capacidad de promover la compartición de información, deberíamos entender que el primer papel en esta tarea consistió en compartir la información acerca de su propio diseño y operación a través de los documentos RFC. Este método único de producir nuevas capacidades en la red continuará siendo crítico para la futura evolución de Internet.
    El futuro: Internet 2
    Internet2 es el futuro de la red de redes y está formado actualmente por un consorcio dirigido por 206 universidades que junto a la industria de comunicaciones y el gobierno están desarrollando nuevas técnicas de conexión que acelerarán la capacidad de transferencia entre servidores.
    Sus objetivos están enfocados a la educación y la investigación académica. Además buscan aprovechar aplicaciones de audio y video que demandan más capacidad de transferencia de ancho de banda.

  11. Historia de la computadora

    La computadora es un invento reciente, que no ha cumplido ni los cien años de existencia desde su primera generación. Sin embargo es un invento que ha venido a revolucionar la forma en la que trabajamos, nos entretenemos y se ha convertido en un aparato esencial en nuestra vida diaria.

    Primera Generación (1951 a 1958)

    Las computadoras de la primera Generación emplearon bulbos para procesar información. Los operadores ingresaban los datos y programas en código especial por medio de tarjetas perforadas. El almacenamiento interno se lograba con un tambor que giraba rápidamente, sobre el cual un dispositivo de lectura/escritura colocaba marcas magnéticas. Esas computadoras de bulbos eran mucho más grandes y generaban más calor que los modelos contemporáneos.

    Eckert y Mauchly contribuyeron al desarrollo de computadoras de la Primera Generación formando una compañía privada y construyendo UNIVAC I, que el Comité del censo utilizó para evaluar el censo de 1950. La IBM tenía el monopolio de los equipos de procesamiento de datos a base de tarjetas perforadas y estaba teniendo un gran auge en productos como rebanadores de carne, básculas para comestibles, relojes y otros artículos; sin embargo no había logrado el contrato para el Censo de 1950.

    Comenzó entonces a construir computadoras electrónicas y su primera entrada fue con la IBM 701 en 1953. Después de un lento pero excitante comienzo la IBM 701 se convirtió en un producto comercialmente viable. Sin embargo en 1954 fue introducido el modelo IBM 650, el cual es la razón por la que IBM disfruta hoy de una gran parte del mercado de las computadoras. La administración de la IBM asumió un gran riesgo y estimó una venta de 50 computadoras.

    Este número era mayor que la cantidad de computadoras instaladas en esa época en E.U. De hecho la IBM instaló 1000 computadoras. El resto es historia. Aunque caras y de uso limitado las computadoras fueron aceptadas rápidamente por las Compañías privadas y de Gobierno. A la mitad de los años 50 IBM y Remington Rand se consolidaban como líderes en la fabricación de computadoras.
    Segunda Generación (1959-1964)
    Transistor Compatibilidad Limitada:

    El invento del transistor hizo posible una nueva Generación de computadoras, más rápidas, más pequeñas y con menores necesidades de ventilación. Sin embargo el costo seguía siendo una porción significativa del presupuesto de una Compañía. Las computadoras de la segunda generación también utilizaban redes de núcleos magnéticos en lugar de tambores giratorios para el almacenamiento primario. Estos núcleos contenían pequeños anillos de material magnético, enlazados entre sí, en los cuales podían almacenarse datos e instrucciones.

    Los programas de computadoras también mejoraron. El COBOL desarrollado durante la 1era generación estaba ya disponible comercialmente. Los programas escritos para una computadora podían transferirse a otra con un mínimo esfuerzo. El escribir un programa ya no requería entender plenamente el hardware de la computación.

    Las computadoras de la 2da Generación eran sustancialmente más pequeñas y rápidas que las de bulbos, y se usaban para nuevas aplicaciones, como en los sistemas para reservación en líneas aéreas, control de tráfico aéreo y simulaciones para uso general. Las empresas comenzaron a aplicar las computadoras a tareas de almacenamiento de registros, como manejo de inventarios, nómina y contabilidad.

    La marina de E.U. utilizó las computadoras de la Segunda Generación para crear el primer simulador de vuelo. (Whirlwind I). HoneyWell se colocó como el primer competidor durante la segunda generación de computadoras. Burroughs, Univac, NCR, CDC, HoneyWell, los más grandes competidores de IBM durante los 60s se conocieron como el grupo BUNCH.
    Tercera Generación (1964-1971)
    Circuitos Integrados, Compatibilidad con Equipo Mayor, Multiprogramación, Minicomputadora:

    Las computadoras de la tercera generación emergieron con el desarrollo de los circuitos integrados (pastillas de silicio) en las cuales se colocan miles de componentes electrónicos, en una integración en miniatura. Las computadoras nuevamente se hicieron más pequeñas, más rápidas, desprendían menos calor y eran energéticamente más eficientes.

    Antes del advenimiento de los circuitos integrados, las computadoras estaban diseñadas para aplicaciones matemáticas o de negocios, pero no para las dos cosas. Los circuitos integrados permitieron a los fabricantes de computadoras incrementar la flexibilidad de los programas, y estandarizar sus modelos.

    La IBM 360 una de las primeras computadoras comerciales que usó circuitos integrados, podía realizar tanto análisis numéricos como administración ó procesamiento de archivos. Los clientes podían escalar sus sistemas 360 a modelos IBM de mayor tamaño y podían todavía correr sus programas actuales. Las computadoras trabajaban a tal velocidad que proporcionaban la capacidad de correr más de un programa de manera simultánea (multiprogramación).

    Por ejemplo la computadora podía estar calculando la nomina y aceptando pedidos al mismo tiempo. Minicomputadoras, Con la introducción del modelo 360 IBM acaparó el 70% del mercado, para evitar competir directamente con IBM la empresa Digital Equipment Corporation DEC redirigió sus esfuerzos hacia computadoras pequeñas. Mucho menos costosas de comprar y de operar que las computadoras grandes, las mini computadoras se desarrollaron durante la segunda generación pero alcanzaron su mayor auge entre 1960 y 1970.
    Cuarta Generación (1971 a la fecha)
    Microprocesador, Chips de memoria, Microminiaturización:

    Dos mejoras en la tecnología de las computadoras marcan el inicio de la cuarta generación: el reemplazo de las memorias con núcleos magnéticos, por las de chips de silicio y la colocación de Muchos más componentes en un Chip: producto de la microminiaturización de los circuitos electrónicos. El tamaño reducido del microprocesador y de chips hizo posible la creación de las computadoras personales (PC Personal Computer).

    Hoy en día las tecnologías LSI (Integración a gran escala) y VLSI (integración a muy gran escala) permiten que cientos de miles de componentes electrónicos se almacenen en un chip. Usando VLSI, un fabricante puede hacer que una computadora pequeña rivalice con una computadora de la primera generación que ocupaba un cuarto completo.

  12. Internet, historia y desarrollo

    Ese fascinante medio que nos tiene exhortos y cautivos, pero,
    ¿qué es en realidad el Internet?

    El Internet tiene sus orígenes a mediados de los años 40’s con un dispositivo foto-electro-mecanico llamado Memex (por Memoria Extendida) que podía seguir enlaces entre documentos y microchips.

    A finales de los años 60’s fue desarrollado por el Pentágono con el nombre de Arpanet (Advanced Reseasrch Projects Agency + Net), durante la fase mas crítica de la guerra de Vietnam, como una red de comunicación multidireccional entre ordenadores, para proteger el sistema científico – militar de un eventual sabotaje o de un ataque nuclear. A mediados de los años 70’s principio de los 80’s se extendió a las Universidades y Centros de Educación Superior con fines académicos, tanto en materia de comunicación entre las mismas Universidades así como de transferencia y comparticion de documentos y archivos, permitiendo la colaboración de catedráticos entre sí. A principio de los años 90’s – mediados de los mismos el Internet incursiono en el mundo comercial, explotando las posibilidades para compañias, empresas e individuos que adoptaran dicha tecnología en sus mecanismos de promoción y controles administrativos. A fines de los años 90’s a la fecha el uso del Internet se ha extendido a particulares y público en general de manera sostenida. Con una población mundial de cientos de millones de usuarios, se ha convertido así en portadora del conocimiento global y multicultural.

    El Internet es una red mundial de computadoras conectadas todas entre sí. Puede decirse que es un conjunto de redes (conexión de varias computadoras entre sí) publicas donde cada computadora que este conectada tiene acceso a cualesquier otra computadora a la vez conectada. Veamos al Internet como la librería de recursos más grande del mundo pues en él encontramos información de todo tipo ya que conectados a ella se encuentran Oficinas Gubernamentales, Compañías y Empresas Privadas, Escuelas y Universidades, productores y prestadores de servicios así como profesionistas y publico en general. Con la capacidad de publicación que encierra, se ha convertido en el medio ideal para dar a conocer su información así como sus productos y servicios.

    El poder que encierra el Internet se basa en que está a nuestra disposición una librería de recursos con los cuales tenemos acceso a un sin numero de nuevos clientes, contactos y prospectos al rededor del mundo así como un eficaz y extremadamente barato medio de contacto y comunicación donde de manera exponencial se puede incrementar el numero de usuarios interesados en nuestro producto o servicio así como de encontrar y tener al alcance en diversas partes del mundo personas afines a nuestras ideas permitiendo la colaboración e intercambio de conocimiento.

    Quizás el error más grande ha sido ver al Internet como un conjunto de extremadamente caros y no necesariamente funcionales dominios corporativos donde además se busque concentrar la atención del “Internauta” con el fin de obtener su atención por medios publicistas o de mero entretenimiento buscando así incrementar los “hits” o “raitings” de audiencias a las páginas web.

    * Internet no es, pues, un medio centrípeto y jerarquizado, sino un medio centrífugo, horizontal y ramificado capilarmente, según el principio de la ubicuidad de los flujos de información y de la equiprobabilidad de las conexiones, que ha transformado la ilusión audiovisual -del cine y la televisión- de viajar con la mirada en la realidad de viajar con el pensamiento. Y cuando se piensa que la ubicuidad, la instaneidad, y la inmediatez son tres atributos que han definido tradicionalmente a la divinidad se entenderá que, a ojos de algunos, Internet sea visto como un megamedio con atributos míticos y casi divinos, que ha hecho del ciberespacio un nuevo continente virtual en el que se concentra energía psíquica procedente de todos los países.

  13. Una computadora o un computador, (del inglés computer, y éste del latín computare -calcular-), también denominada ordenador (del francés ordinateur, y éste del latín ordinator), es una máquina electrónica que recibe y procesa datos para convertirlos en información útil. Una computadora es una colección de circuitos integrados y otros componentes relacionados que puede ejecutar con exactitud, rapidez y de acuerdo a lo indicado por un usuario o automáticamente por otro programa, una gran variedad de secuencias o rutinas de instrucciones que son ordenadas, organizadas y sistematizadas en función a una amplia gama de aplicaciones prácticas y precisamente determinadas, proceso al cual se le ha denominado con el nombre de programación y al que lo realiza se le llama programador. La computadora, además de la rutina o programa informático, necesita de datos específicos (a estos datos, en conjunto, se les conoce como “Input” en inglés) que deben ser suministrados, y que son requeridos al momento de la ejecución, para proporcionar el producto final del procesamiento de datos, que recibe el nombre de “output”. La información puede ser entonces utilizada, reinterpretada, copiada, transferida, o retransmitida a otra(s) persona(s), computadora(s) o componente(s) electrónico(s) local o remotamente usando diferentes sistemas de telecomunicación, pudiendo ser grabada, salvada o almacenada en algún tipo de dispositivo o unidad de almacenamiento.

    La característica principal que la distingue de otros dispositivos similares, como la calculadora no programable, es que es una máquina de propósito general, es decir, puede realizar tareas muy diversas, de acuerdo a las posibilidades que brinde los lenguajes de programación y el hardware.
    http://es.wikipidia.org/wiki/historia_de_internet el desarrollo,historia de las computadoras.

  14. El e-mail o correo electrónico ha supuesto un factor determinante en todas las áreas de Internet, lo que es particularmente cierto en el desarrollo de las especificaciones de protocolos, estándares técnicos e ingeniería en Internet. Las primitivas RFC a menudo presentaban al resto de la comunidad un conjunto de ideas desarrolladas por investigadores de un solo lugar. Después de empezar a usarse el correo electrónico, el modelo de autoría cambió: las RFC pasaron a ser presentadas por coautores con visiones en común, independientemente de su localización.
    Las listas de correo especializadas ha sido usadas ampliamente en el desarrollo de la especificación de protocolos, y continúan siendo una herramienta importante. El IETF tiene ahora más de 75 grupos de trabajo, cada uno dedicado a un aspecto distinto de la ingeniería en Internet. Cada uno de estos grupos de trabajo dispone de una lista de correo para discutir uno o más borradores bajo desarrollo. Cuando se alcanza el consenso en el documento, éste puede ser distribuido como una RFC.
    Debido a que la rápida expansión actual de Internet se alimenta por el aprovechamiento de su capacidad de promover la compartición de información, deberíamos entender que el primer papel en esta tarea consistió en compartir la información acerca de su propio diseño y operación a través de los documentos RFC. Este método único de producir nuevas capacidades en la red continuará siendo crítico para la futura evolución de Internet.

  15. Una computadora o un computador, (del inglés computer, y éste del latín computare -calcular-), también denominada ordenador (del francés ordinateur, y éste del latín ordinator), es una máquina electrónica que recibe y procesa datos para convertirlos en información útil. Una computadora es una colección de circuitos integrados y otros componentes relacionados que puede ejecutar con exactitud, rapidez y de acuerdo a lo indicado por un usuario o automáticamente por otro programa, una gran variedad de secuencias o rutinas de instrucciones que son ordenadas, organizadas y sistematizadas en función a una amplia gama de aplicaciones prácticas y precisamente determinadas, proceso al cual se le ha denominado con el nombre de programación y al que lo realiza se le llama programador. La computadora, además de la rutina o programa informático, necesita de datos específicos (a estos datos, en conjunto, se les conoce como “Input” en inglés) que deben ser suministrados, y que son requeridos al momento de la ejecución, para proporcionar el producto final del procesamiento de datos, que recibe el nombre de “output”. La información puede ser entonces utilizada, reinterpretada, copiada, transferida, o retransmitida a otra(s) persona(s), computadora(s) o componente(s) electrónico(s) local o remotamente usando diferentes sistemas de telecomunicación, pudiendo ser grabada, salvada o almacenada en algún tipo de dispositivo o unidad de almacenamiento.

    La característica principal que la distingue de otros dispositivos similares, como la calculadora no programable, es que es una máquina de propósito general, es decir, puede realizar tareas muy diversas, de acuerdo a las posibilidades que brinde los lenguajes de programación y el hardware.
    http://es.wikipidia.org/wiki/historia_de_internet el desarrollo,historia de las computadora

  16. Historia de la computadora

    La computadora es un invento reciente, que no ha cumplido ni los cien años de existencia desde su primera generación. Sin embargo es un invento que ha venido a revolucionar la forma en la que trabajamos, nos entretenemos y se ha convertido en un aparato esencial en nuestra vida diaria.

    Primera Generación (1951 a 1958)

    Las computadoras de la primera Generación emplearon bulbos para procesar información. Los operadores ingresaban los datos y programas en código especial por medio de tarjetas perforadas. El almacenamiento interno se lograba con un tambor que giraba rápidamente, sobre el cual un dispositivo de lectura/escritura colocaba marcas magnéticas. Esas computadoras de bulbos eran mucho más grandes y generaban más calor que los modelos contemporáneos.

    Eckert y Mauchly contribuyeron al desarrollo de computadoras de la Primera Generación formando una compañía privada y construyendo UNIVAC I, que el Comité del censo utilizó para evaluar el censo de 1950. La IBM tenía el monopolio de los equipos de procesamiento de datos a base de tarjetas perforadas y estaba teniendo un gran auge en productos como rebanadores de carne, básculas para comestibles, relojes y otros artículos; sin embargo no había logrado el contrato para el Censo de 1950.

    Comenzó entonces a construir computadoras electrónicas y su primera entrada fue con la IBM 701 en 1953. Después de un lento pero excitante comienzo la IBM 701 se convirtió en un producto comercialmente viable. Sin embargo en 1954 fue introducido el modelo IBM 650, el cual es la razón por la que IBM disfruta hoy de una gran parte del mercado de las computadoras. La administración de la IBM asumió un gran riesgo y estimó una venta de 50 computadoras.

    Este número era mayor que la cantidad de computadoras instaladas en esa época en E.U. De hecho la IBM instaló 1000 computadoras. El resto es historia. Aunque caras y de uso limitado las computadoras fueron aceptadas rápidamente por las Compañías privadas y de Gobierno. A la mitad de los años 50 IBM y Remington Rand se consolidaban como líderes en la fabricación de computadoras.
    Segunda Generación (1959-1964)
    Transistor Compatibilidad Limitada:

    El invento del transistor hizo posible una nueva Generación de computadoras, más rápidas, más pequeñas y con menores necesidades de ventilación. Sin embargo el costo seguía siendo una porción significativa del presupuesto de una Compañía. Las computadoras de la segunda generación también utilizaban redes de núcleos magnéticos en lugar de tambores giratorios para el almacenamiento primario. Estos núcleos contenían pequeños anillos de material magnético, enlazados entre sí, en los cuales podían almacenarse datos e instrucciones.

    Los programas de computadoras también mejoraron. El COBOL desarrollado durante la 1era generación estaba ya disponible comercialmente. Los programas escritos para una computadora podían transferirse a otra con un mínimo esfuerzo. El escribir un programa ya no requería entender plenamente el hardware de la computación.

    Las computadoras de la 2da Generación eran sustancialmente más pequeñas y rápidas que las de bulbos, y se usaban para nuevas aplicaciones, como en los sistemas para reservación en líneas aéreas, control de tráfico aéreo y simulaciones para uso general. Las empresas comenzaron a aplicar las computadoras a tareas de almacenamiento de registros, como manejo de inventarios, nómina y contabilidad.

    La marina de E.U. utilizó las computadoras de la Segunda Generación para crear el primer simulador de vuelo. (Whirlwind I). HoneyWell se colocó como el primer competidor durante la segunda generación de computadoras. Burroughs, Univac, NCR, CDC, HoneyWell, los más grandes competidores de IBM durante los 60s se conocieron como el grupo BUNCH.
    Tercera Generación (1964-1971)
    Circuitos Integrados, Compatibilidad con Equipo Mayor, Multiprogramación, Minicomputadora:

    Las computadoras de la tercera generación emergieron con el desarrollo de los circuitos integrados (pastillas de silicio) en las cuales se colocan miles de componentes electrónicos, en una integración en miniatura. Las computadoras nuevamente se hicieron más pequeñas, más rápidas, desprendían menos calor y eran energéticamente más eficientes.

    Antes del advenimiento de los circuitos integrados, las computadoras estaban diseñadas para aplicaciones matemáticas o de negocios, pero no para las dos cosas. Los circuitos integrados permitieron a los fabricantes de computadoras incrementar la flexibilidad de los programas, y estandarizar sus modelos.

    La IBM 360 una de las primeras computadoras comerciales que usó circuitos integrados, podía realizar tanto análisis numéricos como administración ó procesamiento de archivos. Los clientes podían escalar sus sistemas 360 a modelos IBM de mayor tamaño y podían todavía correr sus programas actuales. Las computadoras trabajaban a tal velocidad que proporcionaban la capacidad de correr más de un programa de manera simultánea (multiprogramación).

    Por ejemplo la computadora podía estar calculando la nomina y aceptando pedidos al mismo tiempo. Minicomputadoras, Con la introducción del modelo 360 IBM acaparó el 70% del mercado, para evitar competir directamente con IBM la empresa Digital Equipment Corporation DEC redirigió sus esfuerzos hacia computadoras pequeñas. Mucho menos costosas de comprar y de operar que las computadoras grandes, las mini computadoras se desarrollaron durante la segunda generación pero alcanzaron su mayor auge entre 1960 y 1970.
    Cuarta Generación (1971 a la fecha)
    Microprocesador, Chips de memoria, Microminiaturización:

    Dos mejoras en la tecnología de las computadoras marcan el inicio de la cuarta generación: el reemplazo de las memorias con núcleos magnéticos, por las de chips de silicio y la colocación de Muchos más componentes en un Chip: producto de la microminiaturización de los circuitos electrónicos. El tamaño reducido del microprocesador y de chips hizo posible la creación de las computadoras personales (PC Personal Computer).

    Hoy en día las tecnologías LSI (Integración a gran escala) y VLSI (integración a muy gran escala) permiten que cientos de miles de componentes electrónicos se almacenen en un chip. Usando VLSI, un fabricante puede hacer que una computadora pequeña rivalice con una computadora de la primera generación que ocupaba un cuarto completo.

  17. Internet, historia y desarrollo

    Ese fascinante medio que nos tiene exhortos y cautivos, pero,
    ¿qué es en realidad el Internet?

    El Internet tiene sus orígenes a mediados de los años 40’s con un dispositivo foto-electro-mecanico llamado Memex (por Memoria Extendida) que podía seguir enlaces entre documentos y microchips.

    A finales de los años 60’s fue desarrollado por el Pentágono con el nombre de Arpanet (Advanced Reseasrch Projects Agency + Net), durante la fase mas crítica de la guerra de Vietnam, como una red de comunicación multidireccional entre ordenadores, para proteger el sistema científico – militar de un eventual sabotaje o de un ataque nuclear. A mediados de los años 70’s principio de los 80’s se extendió a las Universidades y Centros de Educación Superior con fines académicos, tanto en materia de comunicación entre las mismas Universidades así como de transferencia y comparticion de documentos y archivos, permitiendo la colaboración de catedráticos entre sí. A principio de los años 90’s – mediados de los mismos el Internet incursiono en el mundo comercial, explotando las posibilidades para compañias, empresas e individuos que adoptaran dicha tecnología en sus mecanismos de promoción y controles administrativos. A fines de los años 90’s a la fecha el uso del Internet se ha extendido a particulares y público en general de manera sostenida. Con una población mundial de cientos de millones de usuarios, se ha convertido así en portadora del conocimiento global y multicultural.

    El Internet es una red mundial de computadoras conectadas todas entre sí. Puede decirse que es un conjunto de redes (conexión de varias computadoras entre sí) publicas donde cada computadora que este conectada tiene acceso a cualesquier otra computadora a la vez conectada. Veamos al Internet como la librería de recursos más grande del mundo pues en él encontramos información de todo tipo ya que conectados a ella se encuentran Oficinas Gubernamentales, Compañías y Empresas Privadas, Escuelas y Universidades, productores y prestadores de servicios así como profesionistas y publico en general. Con la capacidad de publicación que encierra, se ha convertido en el medio ideal para dar a conocer su información así como sus productos y servicios.

    El poder que encierra el Internet se basa en que está a nuestra disposición una librería de recursos con los cuales tenemos acceso a un sin numero de nuevos clientes, contactos y prospectos al rededor del mundo así como un eficaz y extremadamente barato medio de contacto y comunicación donde de manera exponencial se puede incrementar el numero de usuarios interesados en nuestro producto o servicio así como de encontrar y tener al alcance en diversas partes del mundo personas afines a nuestras ideas permitiendo la colaboración e intercambio de conocimiento.

    Quizás el error más grande ha sido ver al Internet como un conjunto de extremadamente caros y no necesariamente funcionales dominios corporativos donde además se busque concentrar la atención del “Internauta” con el fin de obtener su atención por medios publicistas o de mero entretenimiento buscando así incrementar los “hits” o “raitings” de audiencias a las páginas web.

    * Internet no es, pues, un medio centrípeto y jerarquizado, sino un medio centrífugo, horizontal y ramificado capilarmente, según el principio de la ubicuidad de los flujos de información y de la equiprobabilidad de las conexiones, que ha transformado la ilusión audiovisual -del cine y la televisión- de viajar con la mirada en la realidad de viajar con el pensamiento. Y cuando se piensa que la ubicuidad, la instaneidad, y la inmediatez son tres atributos que han definido tradicionalmente a la divinidad se entenderá que, a ojos de algunos, Internet sea visto como un megamedio con atributos míticos y casi divinos, que ha hecho del ciberespacio un nuevo continente virtual en el que se concentra energía psíquica procedente de todos los países.

  18. saludito mister d parte d josu pa.!

  19. saludito mister.!

  20. El Internet es una red mundial de computadoras conectadas todas entre sí. Puede decirse que es un conjunto de redes (conexión de varias computadoras entre sí) publicas donde cada computadora que este conectada tiene acceso a cualesquier otra computadora a la vez conectada. Veamos al Internet como la librería de recursos más grande del mundo pues en él encontramos información de todo tipo ya que conectados a ella se encuentran Oficinas Gubernamentales, Compañías y Empresas Privadas, Escuelas y Universidades, productores y prestadores de servicios así como profesionistas y publico en general. Con la capacidad de publicación que encierra, se ha convertido en el medio ideal para dar a conocer su información así como sus productos y servicios.

    El poder que encierra el Internet se basa en que está a nuestra disposición una librería de recursos con los cuales tenemos acceso a un sin numero de nuevos clientes, contactos y prospectos al rededor del mundo así como un eficaz y extremadamente barato medio de contacto y comunicación donde de manera exponencial se puede incrementar el numero de usuarios interesados en nuestro producto o servicio así como de encontrar y tener al alcance en diversas partes del mundo personas afines a nuestras ideas permitiendo la colaboración e intercambio de conocimiento.

    Quizás el error más grande ha sido ver al Internet como un conjunto de extremadamente caros y no necesariamente funcionales dominios corporativos donde además se busque concentrar la atención del “Internauta” con el fin de obtener su atención por medios publicistas o de mero entretenimiento buscando así incrementar los “hits” o “raitings” de audiencias a las páginas web.

    * Internet no es, pues, un medio centrípeto y jerarquizado, sino un medio centrífugo, horizontal y ramificado capilarmente, según el principio de la ubicuidad de los flujos de información y de la equiprobabilidad de las conexiones, que ha transformado la ilusión audiovisual -del cine y la televisión- de viajar con la mirada en la realidad de viajar con el pensamiento. Y cuando se piensa que la ubicuidad, la instaneidad, y la inmediatez son tres atributos que han definido tradicionalmente a la divinidad se entenderá que, a ojos de algunos, Internet sea visto como un megamedio con atributos míticos y casi divinos, que ha hecho del ciberespacio un nuevo continente virtual en el que se concentra energía psíquica procedente de todos los países.

  21. La computadora es un invento reciente, que no ha cumplido ni los cien años de existencia desde su primera generación. Sin embargo es un invento que ha venido a revolucionar la forma en la que trabajamos, nos entretenemos y se ha convertido en un aparato esencial en nuestra vida diaria.

    Primera Generación (1951 a 1958)

    Las computadoras de la primera Generación emplearon bulbos para procesar información. Los operadores ingresaban los datos y programas en código especial por medio de tarjetas perforadas. El almacenamiento interno se lograba con un tambor que giraba rápidamente, sobre el cual un dispositivo de lectura/escritura colocaba marcas magnéticas. Esas computadoras de bulbos eran mucho más grandes y generaban más calor que los modelos contemporáneos.

    Eckert y Mauchly contribuyeron al desarrollo de computadoras de la Primera Generación formando una compañía privada y construyendo UNIVAC I, que el Comité del censo utilizó para evaluar el censo de 1950. La IBM tenía el monopolio de los equipos de procesamiento de datos a base de tarjetas perforadas y estaba teniendo un gran auge en productos como rebanadores de carne, básculas para comestibles, relojes y otros artículos; sin embargo no había logrado el contrato para el Censo de 1950.

    Comenzó entonces a construir computadoras electrónicas y su primera entrada fue con la IBM 701 en 1953. Después de un lento pero excitante comienzo la IBM 701 se convirtió en un producto comercialmente viable. Sin embargo en 1954 fue introducido el modelo IBM 650, el cual es la razón por la que IBM disfruta hoy de una gran parte del mercado de las computadoras. La administración de la IBM asumió un gran riesgo y estimó una venta de 50 computadoras.

    Este número era mayor que la cantidad de computadoras instaladas en esa época en E.U. De hecho la IBM instaló 1000 computadoras. El resto es historia. Aunque caras y de uso limitado las computadoras fueron aceptadas rápidamente por las Compañías privadas y de Gobierno. A la mitad de los años 50 IBM y Remington Rand se consolidaban como líderes en la fabricación de computadoras.
    Segunda Generación (1959-1964)
    Transistor Compatibilidad Limitada:

    El invento del transistor hizo posible una nueva Generación de computadoras, más rápidas, más pequeñas y con menores necesidades de ventilación. Sin embargo el costo seguía siendo una porción significativa del presupuesto de una Compañía. Las computadoras de la segunda generación también utilizaban redes de núcleos magnéticos en lugar de tambores giratorios para el almacenamiento primario. Estos núcleos contenían pequeños anillos de material magnético, enlazados entre sí, en los cuales podían almacenarse datos e instrucciones.

    Los programas de computadoras también mejoraron. El COBOL desarrollado durante la 1era generación estaba ya disponible comercialmente. Los programas escritos para una computadora podían transferirse a otra con un mínimo esfuerzo. El escribir un programa ya no requería entender plenamente el hardware de la computación.

    Las computadoras de la 2da Generación eran sustancialmente más pequeñas y rápidas que las de bulbos, y se usaban para nuevas aplicaciones, como en los sistemas para reservación en líneas aéreas, control de tráfico aéreo y simulaciones para uso general. Las empresas comenzaron a aplicar las computadoras a tareas de almacenamiento de registros, como manejo de inventarios, nómina y contabilidad.

    La marina de E.U. utilizó las computadoras de la Segunda Generación para crear el primer simulador de vuelo. (Whirlwind I). HoneyWell se colocó como el primer competidor durante la segunda generación de computadoras. Burroughs, Univac, NCR, CDC, HoneyWell, los más grandes competidores de IBM durante los 60s se conocieron como el grupo BUNCH.
    Tercera Generación (1964-1971)
    Circuitos Integrados, Compatibilidad con Equipo Mayor, Multiprogramación, Minicomputadora:

    Las computadoras de la tercera generación emergieron con el desarrollo de los circuitos integrados (pastillas de silicio) en las cuales se colocan miles de componentes electrónicos, en una integración en miniatura. Las computadoras nuevamente se hicieron más pequeñas, más rápidas, desprendían menos calor y eran energéticamente más eficientes.

    Antes del advenimiento de los circuitos integrados, las computadoras estaban diseñadas para aplicaciones matemáticas o de negocios, pero no para las dos cosas. Los circuitos integrados permitieron a los fabricantes de computadoras incrementar la flexibilidad de los programas, y estandarizar sus modelos.

    La IBM 360 una de las primeras computadoras comerciales que usó circuitos integrados, podía realizar tanto análisis numéricos como administración ó procesamiento de archivos. Los clientes podían escalar sus sistemas 360 a modelos IBM de mayor tamaño y podían todavía correr sus programas actuales. Las computadoras trabajaban a tal velocidad que proporcionaban la capacidad de correr más de un programa de manera simultánea (multiprogramación).

    Por ejemplo la computadora podía estar calculando la nomina y aceptando pedidos al mismo tiempo. Minicomputadoras, Con la introducción del modelo 360 IBM acaparó el 70% del mercado, para evitar competir directamente con IBM la empresa Digital Equipment Corporation DEC redirigió sus esfuerzos hacia computadoras pequeñas. Mucho menos costosas de comprar y de operar que las computadoras grandes, las mini computadoras se desarrollaron durante la segunda generación pero alcanzaron su mayor auge entre 1960 y 1970.
    Cuarta Generación (1971 a la fecha)
    Microprocesador, Chips de memoria, Microminiaturización:

    Dos mejoras en la tecnología de las computadoras marcan el inicio de la cuarta generación: el reemplazo de las memorias con núcleos magnéticos, por las de chips de silicio y la colocación de Muchos más componentes en un Chip: producto de la microminiaturización de los circuitos electrónicos. El tamaño reducido del microprocesador y de chips hizo posible la creación de las computadoras personales (PC Personal Computer).

    Hoy en día las tecnologías LSI (Integración a gran escala) y VLSI (integración a muy gran escala) permiten que cientos de miles de componentes electrónicos se almacenen en un chip. Usando VLSI, un fabricante puede hacer que una computadora pequeña rivalice con una computadora de la primera generación que ocupaba un cuarto completo.

  22. La computadora es un invento reciente, que no ha cumplido ni los cien años de existencia desde su primera generación. Sin embargo es un invento que ha venido a revolucionar la forma en la que trabajamos, nos entretenemos y se ha convertido en un aparato esencial en nuestra vida diaria.

  23. ATANASOFF Y BERRY Una antigua patente de un dispositivo que mucha genté creyó que era la primera computadora digital electrónica, se invalidó en 1973 por orden de un tribunal federal, y oficialmente se le dió el credito a John V. Atanasoff como el inventor de la computador a digital electrónica. El Dr. Atanasoff, catedrático de la Universidad Estatal de Iowa, desarrolló la primera computadora digital electrónica entre los años de 1937 a 1942. Llamó a su invento la computadora Atanasoff-Berry, ó solo ABC (Atanasoff Berry Com puter). Un estudiante graduado, Clifford Berry,fue una úti Algunos autores consideran que no hay una sola persona a la que se le pueda atribuir el haber inventado la computadora, sino que fue el esfuezo de muchas personas. Sin embargo en el antiguo edificio de Física de la Universidad de Iowa aparece una p laca con la siguiente leyenda: “La primera computadora digital electrónica de operación automática del mundo, fue construida en este edificio en

    1939 por John Vincent Atanasoff, matemático y físico de la Facultad de la Universidad, quien concibió la idea, y por Clifford Edward Berry, estudiante graduado de física.”

    Mauchly y Eckert, después de varias conversaciones con el Dr. Atanasoff, leer apuntes que describían los principios de la computadora ABC y verla en persona, el Dr. John W. Mauchly colaboró con J.Presper Eckert, Jr. para desarrollar una máquina que calcul ara tablas de trayectoria para el ejército estadounidense. El producto final, una computadora electrónica completamente operacional a gran escala, se terminó en 1946 y se llamó ENIAC (Electronic Numerical Integrator And Computer), ó Integrador numéric o y calculador electrónico.

    La ENIAC construida para aplicaciones de la Segunda Guerra mundial, se terminó en 30 meses por un equipo de científicos que trabajan bajo reloj. La ENIAC, mil veces más veloz que sus predecesoras electromecánicas, irrumpió como un importante descubrimiento en la tecnología de la computación. Pesaba 30 toneladas y ocupaba un espacio de 450 mts cuadrados, llenaba un cuarto de 6 m x 12 m y con tenía 18,000 bulbos, tenía que programarse manualmente conectándola a 3 tableros que contenían más de 6000 interruptores. Ingresar un nuevo programa era un proceso muy tedioso que requería días o incluso semanas. A diferencia de las computadoras actuales que operan con un sistema binario (0,1) la ENIAC operaba con uno decimal (0,1,2..9) La ENIAC requería una gran cantidad de electricidad. La leyenda cuenta que la ENIAC, construida en la Universidad de Pensilvania, bajaba las luces de Filadelfia siempre que se activaba. La imponente escala y las numerosas aplicaciones generales de la ENIAC señalaron el comienzo de la primera generación de computadoras.

    En 1945, John von Neumann, que había trabajado con Eckert y Mauchly en la Universidad de Pennsylvania, publicó un artículo acerca del almacenamiento de programas. El concepto de programa almacenado permitió la lectura de un programa dentro de la memoria d e la computadora, y después la ejecución de las instrucciones del mismo sin tener que volverlas a escribir. La primera computadora en usar el citado concepto fue la la llamada EDVAC (Eletronic Discrete-Variable Automatic Computer, es decir computadora aut omática electrónica de variable discreta), desarrollada por Von Neumann, Eckert y Mauchly.

    Los programas almacenados dieron a las computadoras una flexibilidad y confiabilidad tremendas, haciéndolas más rápidas y menos sujetas a errores que los programas mecánicos. Una computadora con capacidad de programa almacenado podría ser utilizada para v arias aplicaciones cargando y ejecutando el programa apropiado. Hasta este punto, los programas y datos podría ser ingresados en la computadora sólo con la notación binaria, que es el único código que las computadoras “entienden”.

    El siguiente desarrollo importante en el diseño de las computadoras fueron los programas intérpretes, que permitían a las personas comunicarse con las computadoras utilizando medios distintos a los numeros binarios. En 1952 Grace Murray Hoper una oficial de la Marina de E.U., desarrolló el primer compilador, un programa que puede traducir enunciados parecidos al inglés en un código binario comprensible para la maquina llamado COBOL (COmmon Business-Oriented Langu aje).

    l ayuda en la construcción de la computadora ABC.
    Algunos autores consideran que no hay una sola persona a la que se le pueda atribuir el haber inventado la computadora, sino que fue el esfuezo de muchas personas. Sin embargo en el antiguo edificio de Física de la Universidad de Iowa aparece una p laca con la siguiente leyenda: “La primera computadora digital electrónica de operación automática del mundo, fue construida en este edificio en

    1939 por John Vincent Atanasoff, matemático y físico de la Facultad de la Universidad, quien concibió la idea, y por Clifford Edward Berry, estudiante graduado de física.”

    Mauchly y Eckert, después de varias conversaciones con el Dr. Atanasoff, leer apuntes que describían los principios de la computadora ABC y verla en persona, el Dr. John W. Mauchly colaboró con J.Presper Eckert, Jr. para desarrollar una máquina que calcul ara tablas de trayectoria para el ejército estadounidense. El producto final, una computadora electrónica completamente operacional a gran escala, se terminó en 1946 y se llamó ENIAC (Electronic Numerical Integrator And Computer), ó Integrador numéric o y calculador electrónico.

    La ENIAC construida para aplicaciones de la Segunda Guerra mundial, se terminó en 30 meses por un equipo de científicos que trabajan bajo reloj. La ENIAC, mil veces más veloz que sus predecesoras electromecánicas, irrumpió como un importante descubrimiento en la tecnología de la computación. Pesaba 30 toneladas y ocupaba un espacio de 450 mts cuadrados, llenaba un cuarto de 6 m x 12 m y con tenía 18,000 bulbos, tenía que programarse manualmente conectándola a 3 tableros que contenían más de 6000 interruptores. Ingresar un nuevo programa era un proceso muy tedioso que requería días o incluso semanas. A diferencia de las computadoras actuales que operan con un sistema binario (0,1) la ENIAC operaba con uno decimal (0,1,2..9) La ENIAC requería una gran cantidad de electricidad. La leyenda cuenta que la ENIAC, construida en la Universidad de Pensilvania, bajaba las luces de Filadelfia siempre que se activaba. La imponente escala y las numerosas aplicaciones generales de la ENIAC señalaron el comienzo de la primera generación de computadoras.

    En 1945, John von Neumann, que había trabajado con Eckert y Mauchly en la Universidad de Pennsylvania, publicó un artículo acerca del almacenamiento de programas. El concepto de programa almacenado permitió la lectura de un programa dentro de la memoria d e la computadora, y después la ejecución de las instrucciones del mismo sin tener que volverlas a escribir. La primera computadora en usar el citado concepto fue la la llamada EDVAC (Eletronic Discrete-Variable Automatic Computer, es decir computadora aut omática electrónica de variable discreta), desarrollada por Von Neumann, Eckert y Mauchly.

    Los programas almacenados dieron a las computadoras una flexibilidad y confiabilidad tremendas, haciéndolas más rápidas y menos sujetas a errores que los programas mecánicos. Una computadora con capacidad de programa almacenado podría ser utilizada para v arias aplicaciones cargando y ejecutando el programa apropiado. Hasta este punto, los programas y datos podría ser ingresados en la computadora sólo con la notación binaria, que es el único código que las computadoras “entienden”.

    El siguiente desarrollo importante en el diseño de las computadoras fueron los programas intérpretes, que permitían a las personas comunicarse con las computadoras utilizando medios distintos a los numeros binarios. En 1952 Grace Murray Hoper una oficial de la Marina de E.U., desarrolló el primer compilador, un programa que puede traducir enunciados parecidos al inglés en un código binario comprensible para la maquina llamado COBOL (COmmon Business-Oriented Langu aje).

  24. La tecnología de información (IT), según lo definido por la asociación de la tecnología de información de América (ITAA) es “el estudio, diseño, desarrollo, implementación, soporte o dirección de los sistemas de información computarizados, en particular de software de aplicación y hardware de computadoras.” Se ocupa del uso de las computadoras y su software para convertir, almacenar, proteger, procesar, transmitir y recuperar la información. Hoy en día, el término “tecnología de información” se suele mezclar con muchos aspectos de la computación y la tecnología y el término es más reconocible que antes. La tecnología de la información puede ser bastante amplio, cubriendo muchos campos. Los profesionales TI realizan una variedad de tareas que van desde instalar aplicaciones a diseñar complejas redes de computación y bases de datos. Algunas de las tareas de los profesionales TI incluyen, administración de datos, redes, ingeniería de hardware, diseño de programas y bases de datos, así como la administración y dirección de los sistemas completos. Cuando las tecnologías de computación y comunicación se combinan, el resultado es la tecnología de la información o “infotech”. La Tecnología de la Información (IT) es un término general que describe cualquier tecnología que ayuda a producir, manipular, almacenar, comunicar, y/o esparcir información.

  25. La historia de la computadora.
    3000 A.A.C.: Dedos de la mano. Turcos en la tierra con cuentas móviles.
    500 A.A.C.: Abaco(Barrillos de hierro con cuentas móviles)
    Siglo XVII: 1642. Blaise Pascal invento la primera calculadora de madera y ruedas dentadas; sumaba y restaba. Y la llamo Pascalina.
    1673, maquina de Leilentz. Es la mejora de la Pascalina. Su función era multiplicar y dividir.
    Siglo XIX: Maquina analítica creada por Babage en 1833. Utilizaba tarjetas perforadas.
    Máquina tabuladora creada por Hollerith para el censo d 18090 de Estados Unidos Sobre la base de esta máquina, Hollerith, fundo la empresa I.B.M.
    Siglo XX: en 1946, Howard Aiken diseño la maquina MARK I, la primera computadora electromecánica (Válvulas y rieles)

  26. Los orígenes de Internet se remontan a más de veinticinco años atrás, como un proyecto de investigación en redes de conmutación de paquetes, dentro de un ámbito militar. A finales de los años sesenta (1969), en plena guerra fría, el Departamento de Defensa Americano (DoD) llegó a la conclusión de que su sistema de comunicaciones era demasiado vulnerable. Estaba basado en la comunicación telefónica (Red Telefónica Conmutada, RTC), y por tanto, en una tecnología denominada de conmutación de circuitos, (un circuito es una conexión entre llamante y llamado), que establece enlaces únicos y en número limitado entre importantes nodos o centrales, con el consiguiente riesgo de quedar aislado parte del país en caso de un ataque militar sobre esas arterias de comunicación.

  27. La historia de Internet

    se remonta al temprano desarrollo de las redes de comunicación. La idea de una red de computadoras diseñada para permitir la comunicación general entre usuarios de varias computadoras sea tanto desarrollos tecnológicos como la fusión de la infraestructura de la red ya existente y los sistemas de telecomunicaciones.

    Las más antiguas versiones de estas ideas aparecieron a finales de los años cincuenta. Implementaciones prácticas de estos conceptos empezaron a finales de los ochenta y a lo largo de los noventa. En la década de 1980, tecnologías que reconoceríamos como las bases de la moderna Internet, empezaron a expandirse por todo el mundo. En los noventa se introdujo la World Wide Web(WWW), que se hizo común.

    La infraestructura de Internet se esparció por el mundo, para crear la moderna red mundial de computadoras que hoy conocemos. Atravesó los países occidentales e intentó una penetración en los países en desarrollo, creando un acceso mundial a información y comunicación sin precedentes, pero también una brecha digital en el acceso a esta nueva infraestructura. Internet también alteró la economía del mundo entero, incluyendo las implicaciones económicas de la burbuja de las .com.

    Un método de conectar computadoras, prevalente sobre los demás, se basaba en el método de la computadora central o unidad principal, que simplemente consistía en permitir a sus terminales conectarse a través de largas líneas alquiladas. Este método se usaba en los años cincuenta por el Proyecto RAND para apoyar a investigadores como Herbert Simon, en Pittsburgh (Pensilvania), cuando colaboraba a través de todo el continente con otros investigadores de Santa Mónica (California) trabajando en demostración automática de teoremas e inteligencia artificial.

    Un pionero fundamental en lo que se refiere a una red mundial, J.C.R. Licklider, comprendió la necesidad de una red mundial, según consta en su documento de enero, 1960, Man-Computer Symbiosis (Simbiosis Hombre-Computadora).

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: